Installation, Use and Maintenance Manual

AY00-120
Condensing boiler for heating

gas powered
INDEX OF CONTENTS

I Introduction ... p. 4
 I.1 Recipients ... p. 4
 I.2 Control device ... p. 4

II Symbols and definitions .. p. 4
 II.1 Key to symbols .. p. 4
 II.2 Terms and definitions ... p. 4

III Warnings ... p. 4
 III.1 General and safety warnings p. 4
 III.2 Conformity ... p. 6
 III.3 Exclusions of liability and warranty p. 6

1 Features and technical data ... p. 7
 1.1 Features ... p. 7
 1.2 Dimensions .. p. 7
 1.3 Electrical wiring diagram p. 9
 1.4 Electronic boards ... p. 10
 1.5 Controls ... p. 10
 1.6 Technical characteristics p. 11

2 Transport and positioning .. p. 12
 2.1 Warnings ... p. 12
 2.2 Handling ... p. 12
 2.3 Appliance positioning ... p. 12
 2.4 Minimum clearance distances p. 12
 2.5 Mounting base .. p. 13

3 Heating engineer ... p. 13
 3.1 Warnings ... p. 13
 3.2 Installation ... p. 13
 3.3 Hydraulic connections .. p. 13
 3.4 Water circulation pump p. 14
 3.5 Anti-icing function ... p. 14
 3.6 Anti-icing liquid ... p. 14
 3.7 System water quality ... p. 15
 3.8 Installation filling .. p. 15
 3.9 Fuel gas supply .. p. 16
 3.10 Combustion products exhaust p. 17
 3.11 Flue gas condensate discharge p. 17

4 Electrical installer ... p. 18
 4.1 Warnings ... p. 18
 4.2 Electrical systems ... p. 18
 4.3 Electrical power supply p. 19
 4.4 Set-up and control ... p. 19
 4.5 Water circulation pump p. 21

5 First start-up ... p. 22
 5.1 Preliminary checks ... p. 22

6 Normal operation .. p. 23
 6.1 Warnings ... p. 23
 6.2 Switch on and off ... p. 23
 6.3 Messages on the display p. 23
 6.4 Electronic adjustment on the machine – Menus and parameters .. p. 23
 6.5 Modifying settings .. p. 24
 6.6 Restarting a locked-down unit p. 25
 6.7 Efficiency ... p. 25

7 Maintenance .. p. 25
 7.1 Warnings ... p. 25
 7.2 Pre-emptive maintenance p. 26
 7.3 Scheduled routine maintenance p. 26
 7.4 Periods of inactivity .. p. 26

8 Diagnostics .. p. 28
 8.1 Operative codes ... p. 28

9 Appendices ... p. 29
 9.1 Product fiche .. p. 29
I INTRODUCTION

Manual
This Manual is an integral part of the AY00-120 unit and must be handed to the end user together with the appliance.

I.1 RECIPIENTS
This Manual is intended for:

I.2 CONTROL DEVICE
In order to be able to work, the AY00-120 unit needs a control device (DDC, CCP/CCI or external requests), which must be connected by the installer.

II SYMBOLS AND DEFINITIONS

II.1 KEY TO SYMBOLS

II.2 TERMS AND DEFINITIONS
Appliance/Unit AY = equivalent terms, both used to designate the AY00-120 gas fired condensing boiler.
TAC = Technical Assistance Centre authorised by Robur.
External request = generic control device (e.g. thermostat, timer or any other system) equipped with a voltage-free NO contact and used as control to start/stop the AY00-120 unit.
CCI Controller (Comfort Controller Interface) = optional Robur control device which lets you manage up to three modulating heat only GAHP units (A, WS, GS).
CCP Controller (Comfort Control Panel) = Robur control device which lets you manage in modulation mode up to three GAHP units and all system components (probes, diverter/mixing valves, circulating pumps), including any integration boiler.
DDC Control (Direct Digital Controller) = optional Robur device to control one or more Robur appliances (GAHP heat pumps, GA chillers and AY boilers) in ON/OFF mode.
RB100/RB200 Devices (Robur Box) = optional interface devices complementary to DDC, which may be used to broaden its functions (heating/cooling/DHW production service demands, and control of system components such as third party generators, adjustment valves, circulators, probes).
Heat generator = equipment (e.g. boiler, heat pump, etc.) producing heating and/or DHW.
First Switch-On = appliance commissioning operation which may only and exclusively be carried out by a TAC.
AY10/S70 boards = electronic boards on the AY00-120 unit, to control all functions and to provide interface with other devices and with the user.

III WARNINGS

III.1 GENERAL AND SAFETY WARNINGS

Installation must exclusively be performed by a Qualified Firm and by Skilled Personnel, with specific knowledge on heating, cooling, electrical systems and gas appliances, in compliance with the laws in force in the Country of installation.

Declaration of Conformity
Upon completing installation, the installing firm shall issue to the owner/client the appliance's Workmanlike Conformity Declaration, according to national/local regulations in force and the manufacturer's instructions/provisions.

Misuse
The appliance must only be used for the purposes for which it has been designed. Any other use is deemed hazardous. Incorrect use may affect operation, duration and safety of the appliance. Adhere to the manufacturer's instructions.

Hazardous situations
- Do not start the appliance in hazardous conditions, such as: gas smell, problems with the plumbing/electrical/gas system, parts of the appliance under water or damaged, malfunctioning, disabling or bypassing control and safety devices.
- In case of danger, request intervention by skilled personnel.
- In case of danger, switch off the electrical power and gas supplies only if this can be done in total safety.
- Do not entrust children, persons with physical, sensory or mental disabilities or persons with poor knowledge...
and experience with use of the appliance.

Gas component tightness
- Before performing any operation on gas ducting components, close the gas cock.
- Upon completing any procedure, perform the tightness test according to regulations in force.

Gas smell
If you smell gas:
- Do not use electrical devices such as telephones, multimeters or other equipment that may cause sparks next to the appliance.
- Shut off the gas supply by turning the cock off.
- Disconnect electrical power supply by means of the external isolation switch in the power supply electrical panel.
- Use a telephone away from the appliance to ask for intervention from skilled personnel.

Poisoning
- Ensure the flue gas ducts are tightness and compliant with the regulations in force.
- Upon completing any procedure, ensure components are tightness.

Moving parts
- The appliance contains moving parts.
- Do not remove guards during operation, and in any case prior to disconnecting the power supply.

Burn hazard
- The appliance contains very hot parts.
- Do not open the appliance and do not touch internal components before the appliance has cooled down.
- Do not touch the flue gas exhaust before it has cooled down.

Electrocution hazard
- Disconnect the electrical power supply before any work/procedure on appliance components.
- For electrical connections exclusively use compliant components and according to the specifications provided by the manufacturer.
- Ensure the appliance cannot be accidentally switched back on.

Earthing
- Electrical safety depends on effective earthing system, correctly connected to the appliance and installed according to the regulations in force.

Distance from combustible or flammable materials
- Do not store flammable materials (paper, solvents, paint, etc.) in the vicinity of the appliance.

Limescale and corrosion
- Depending on the chemical/physical properties of the system water, limescale or corrosion may damage the appliance (Paragraph 3.7 p. 15).
- Check system sealing.
- Avoid frequent top-ups.

Chloride concentration
- The concentration of chlorides or free chlorine in the system water must not exceed the values in Table 3.2 p. 15.

Aggressive substances in air
- Halogenated hydrocarbons containing chlorine and fluorine compounds cause corrosion. The air of the installation site must be free from aggressive substances.

Acid flue gas condensate
- Discharge the acid condensate of combustion flue gas, as indicated in Paragraph 3.11 p. 17, in compliance with current exhaust regulations.

Switching the appliance off
- Disconnecting the power supply while the appliance is running may cause permanent damage to internal components.
- Except in the case of danger, do not disconnect the power supply to switch off the appliance, but always and exclusively act through the control device provided (DDC, CCP/CCI or external request).

In the event of failure
- Operations on internal components and repairs may exclusively be carried out by a TAC, only using original parts.
- In the event of failure of the appliance and/or breakage of any component, do not attempt to repair and/or restore and immediately contact the TAC.

Routine maintenance
- Proper maintenance assures the efficiency and good operation of the appliance over time.
- Maintenance must be performed according to the manufacturer’s instructions (see Chapter 7 p. 29) and in compliance with current regulations.
- Appliance maintenance and repairs may only be entrusted to firms legally authorised to work on gas appliances and systems.
- Enter into a maintenance contract with an authorised specialised firm for routine maintenance and for servicing in case of need.
- Only use original parts.

Decommissioning and disposal
- If the appliance is to be disposed of, contact the manufacturer for its disposal.

Keep the Manual
- This “Installation, Use and Maintenance Manual” must always accompany the appliance and must be handed to the new owner or installer in the event of sale or removal.
III.2 CONFORMITY

EU Directives and standards
The appliance is CE certified and conforms with all essential requirements of the following Directives:
Furthermore, they comply with the requirements of the following standards:
▶ UNI EN 677 Specific requirements for condensing boilers with nominal heating capacity up to 70 kW.
▶ UNI EN 483 Type C boilers with nominal thermal capacity no greater than 70 kW.

Other applicable provisions and standards
The design, installation, operation and maintenance of the systems shall be carried out in compliance with current applicable regulations, depending on the Country and location, and in accordace with the manufacturer's instructions. In particular, regulations regarding the following shall be complied with:
▶ Gas systems and equipment.
▶ Electrical systems and equipment.
▶ Heating systems employing condensing boilers.
▶ Environmental protection and combustion products exhaust.
▶ Fire safety and prevention.
▶ Any other applicable law, standard and regulation.

III.3 EXCLUSIONS OF LIABILITY AND WARRANTY

Any contractual or extra-contractual liability of the manufacturer for any damage caused by incorrect installation and/or improper use and/or failure to comply with regulations and with the manufacturer's directions/instructions shall be disclaimed.

In particular, the warranty on the appliance may be rendered void by the following conditions:
- Incorrect installation.
- Misuse.
- Failure to comply with the manufacturer's indications on installation, use and maintenance.
- Alteration or modification of the product or any part thereof.
- Extreme operational conditions or however outside of the operational ranges set forth by the manufacturer.
- Damages caused by external agents such as salts, chlorine, sulphur or other chemical substances contained in the installation water or present in the air of the installation site.
- Abnormal actions transmitted by the plant or installation to the appliance (mechanical stresses, pressure, vibrations, thermal dilations, power surges...).
- Accidental damages or due to force majeure.
1 FEATURES AND TECHNICAL DATA

1.1 FEATURES
AY00-120 unit is a high efficiency condensing boiler suitable for supply hot water up to 80 °C. The appliance is provided with an internal heat exchanger to separate internal hydraulic circuit from system hydraulic circuit.

Mechanical and thermo-hydraulic components
▶ premixed multi-gas burner with low NOx and CO emissions;
▶ stainless steel plate heat exchanger, combining a hydraulic separator;
▶ automatic and manual air bleeds on the internal circuit;
▶ flue gas discharge duct with relevant terminal, for type B53P configuration;
▶ condensate discharge siphon (with antifreeze function).

Control and safety devices
▶ electronic board with microprocessor;
▶ automatically resettable water temperature limiting thermostat;
▶ flue gas limit thermostat, for single use (thermal switch);
▶ system circuit water differential pressure switch (PD1);
▶ internal circuit water differential pressure switch (PD2) with anti-sticking function;
▶ overpressure valve on internal circuit, set to trip at 3 bar;
▶ internal circuit expansion tank;
▶ ionisation flame controller;
▶ gas solenoid valve with double shutter;
▶ antifreeze function for water circuit;
▶ anti-freezing thermostat used for the activation of the heating element on the condensate drain.

1.2 DIMENSIONS

Figure 1.1 Dimensions (front and right side views)
Figure 1.2 Service plate - Hydraulic/gas unions detail

G Gas connection Ø 3/4” M
A Water outlet connection Ø 1 1/4” F
B Water inlet connection Ø 1 1/4” F
C Condensate discharge connection (ext. D. 25 mm)
1.3 ELECTRICAL WIRING DIAGRAM

Figure 1.3 Wiring diagram AY00-120 unit

SCH Electronic boards AY10/S70
TA Ambient air temperature sensor
THPC Delivery water temperature probe (appliance internal circuit)
THMC Hot water flow temperature probe
THRC Hot water return temperature probe
TH Combustion unit limit thermostat (appliance internal circuit)
TF Flue gas thermostat
A2 Differential water pressure switch (appliance internal circuit)
P0 Differential water pressure switch (system circuit)
TL Water limit thermostat
P1 Water circulating pump (appliance internal circuit)
LS Gas valve ON indicator lamp
GV Gas solenoid valve
IGNTR Ignition transformer
IGN Ignition electrodes
FLS Flame sensor
CNTBOX Flame controller
BLW Blower
MC Appliance power terminal block
PWRTR Board transformer
TS Safety thermostat
TG Antifreeze thermostat for syphon resistance
RS Syphon resistance
1.4 ELECTRONIC BOARDS

Electronic boards (AY10+S70)
The unit’s electrical board contains:

- **AY10 Electronic Board** (Figure 1.4 p. 10), with microprocessor, it controls the appliance and displays data, messages and operative codes. The appliance is monitored and programmed by interacting with the display and the knob.
- **Auxiliary S70 electronic board** (Figure 1.4 p. 10).

![AY10+S70 electronic boards](image.png)

Figure 1.4 AY10+S70 electronic boards

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL</td>
<td>limit thermostat connector</td>
</tr>
<tr>
<td>ENC</td>
<td>Knob</td>
</tr>
<tr>
<td>EV</td>
<td>gas solenoid valve connector</td>
</tr>
<tr>
<td>LS</td>
<td>gas valve ON signal lamp connector</td>
</tr>
<tr>
<td>P1</td>
<td>6 pole flame controller connector</td>
</tr>
<tr>
<td>TF</td>
<td>exhausted gas thermostat connector</td>
</tr>
<tr>
<td>PD</td>
<td>system water differential pressure switch</td>
</tr>
<tr>
<td>A1, A2</td>
<td>Auxiliary inputs</td>
</tr>
<tr>
<td>J2</td>
<td>system water circulating pump jumper</td>
</tr>
<tr>
<td>N.O. CONTACT</td>
<td>System water circulating pump control terminals (max 700 W)</td>
</tr>
<tr>
<td>V3V (1-2-N)</td>
<td>appliance circulating pump connecting terminals</td>
</tr>
<tr>
<td>MAIN</td>
<td>230V (L, N) Board power supply 230 Vac</td>
</tr>
<tr>
<td>IGN.BOX (L, N)</td>
<td>Flame controller power supply 230 Vac</td>
</tr>
<tr>
<td>P1</td>
<td>connector for blower drive</td>
</tr>
<tr>
<td>THRC</td>
<td>Return hot water temperature connector</td>
</tr>
<tr>
<td>THMC</td>
<td>Delivery hot water temperature connector</td>
</tr>
<tr>
<td>TA2-TA1</td>
<td>auxiliary temperature probes connector</td>
</tr>
<tr>
<td>J1</td>
<td>CAN BUS Jumper</td>
</tr>
<tr>
<td>P8</td>
<td>(GND, L, H) CAN BUS connector</td>
</tr>
<tr>
<td>P7</td>
<td>(R, W, 0) Enable input</td>
</tr>
<tr>
<td>F5</td>
<td>board supply connector</td>
</tr>
<tr>
<td>F1-F2</td>
<td>fuses</td>
</tr>
</tbody>
</table>

1.5 CONTROLS

Control device
The appliance may only work if it is connected to a control device, selected from:

- (1) **DDC control**
- (2) **CCP/CCI control**
- (3) **external request**

1.5.1 Adjustment system (1) with DDC control (ON/OFF unit)
The DDC controller is able to control appliances, a single AY00-120 unit, or even several Robur GAHP/GA/AY units in cascade, only in ON/OFF mode (non modulating). For more details refer to the DDC, RB100, RB200 Manuals and the Design Manual.

DDC Controller
The main functions are:

- setup and control of one (or more) Robur units of the absorption line (GAHP, GA, AY);
- parameter figures display and setting;
- hourly programming;
- climate curve control;
- diagnostics;
- reset errors;
- possibility to interface with a BMS;

DDC functionality may be extended with auxiliary Robur devices RB100 and RB200 (e.g. service requests, DHW production, Third Party generator control, probe control, system valves or circulating pumps, ...).
Features and technical data

1.5.2 Adjustment system (2) with CCP/CCI (modulating GAHP unit)

The CCP/CCI control is able to control up to 3 GAHP units in modulating mode (therefore A/WS/GS only, excluding AR/ACF/AY), plus any AY00-120 integration ON/OFF boiler. For additional details and diagrams refer to the CCP/CCI Manual and the Design Manual.

CCP/CCI Control

1.5.3 Adjustment system (3) with external request (GAHP unit ON/OFF)

The appliance may also be controlled via generic request devices (e.g. thermostats, clocks, buttons, contactors...) fitted with voltage-free NO contact. This system only provides elementary control (on/off, with fixed set-point temperature), thus without the important system functions (1). It is advisable to limit its possible use only to simple applications and with a single appliance.

For connection of the selected device to the appliance’s electronic board please refer to Paragraph 4.4 p. 19.

1.6 TECHNICAL CHARACTERISTICS

Table 1.1 Technical specifications AY00-120

<table>
<thead>
<tr>
<th>Heating mode</th>
<th>AY00-120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seasonal space heating energy efficiency class (ErP)</td>
<td></td>
</tr>
<tr>
<td>Operating point 80/60</td>
<td></td>
</tr>
<tr>
<td>Nominal thermal capacity</td>
<td>effective power</td>
</tr>
<tr>
<td>Mean thermal capacity</td>
<td>efficiency</td>
</tr>
<tr>
<td>Minimal thermal capacity</td>
<td>efficiency</td>
</tr>
<tr>
<td>Operating point 70/50</td>
<td></td>
</tr>
<tr>
<td>Nominal thermal capacity</td>
<td>efficiency</td>
</tr>
<tr>
<td>Operating point 50/30</td>
<td></td>
</tr>
<tr>
<td>Nominal thermal capacity</td>
<td>efficiency</td>
</tr>
<tr>
<td>Operating point Tr = 30 °C</td>
<td></td>
</tr>
<tr>
<td>Thermal capacity 30%</td>
<td>efficiency</td>
</tr>
<tr>
<td>Operating point Tr = 47 °C</td>
<td></td>
</tr>
<tr>
<td>Thermal capacity 30%</td>
<td>efficiency</td>
</tr>
<tr>
<td>Heating capacity</td>
<td></td>
</tr>
<tr>
<td>nominal (1013 mbar - 15 °C)</td>
<td>kW</td>
</tr>
<tr>
<td>average</td>
<td>kW</td>
</tr>
<tr>
<td>minimum</td>
<td>kW</td>
</tr>
<tr>
<td>Hot water delivery temperature</td>
<td></td>
</tr>
<tr>
<td>maximum</td>
<td>°C</td>
</tr>
<tr>
<td>minimum</td>
<td>°C</td>
</tr>
<tr>
<td>nominal</td>
<td>°C</td>
</tr>
<tr>
<td>Hot water inlet temperature</td>
<td></td>
</tr>
<tr>
<td>maximum</td>
<td>°C</td>
</tr>
<tr>
<td>minimum</td>
<td>°C</td>
</tr>
<tr>
<td>nominal</td>
<td>°C</td>
</tr>
<tr>
<td>Heating water flow</td>
<td></td>
</tr>
<tr>
<td>nominal</td>
<td>l/h</td>
</tr>
<tr>
<td>maximum</td>
<td>l/h</td>
</tr>
<tr>
<td>minimum</td>
<td>l/h</td>
</tr>
<tr>
<td>Pressure drop heating mode</td>
<td></td>
</tr>
<tr>
<td>at nominal water flow</td>
<td>bar</td>
</tr>
<tr>
<td>Efficiency class</td>
<td></td>
</tr>
<tr>
<td>Heat loss</td>
<td></td>
</tr>
<tr>
<td>to jacket in operation</td>
<td>kW</td>
</tr>
<tr>
<td>to jacket in operation</td>
<td>%</td>
</tr>
<tr>
<td>to flue in operation</td>
<td>kW</td>
</tr>
<tr>
<td>to flue in operation</td>
<td>%</td>
</tr>
<tr>
<td>in off mode</td>
<td>kW</td>
</tr>
<tr>
<td>in off mode</td>
<td>%</td>
</tr>
<tr>
<td>Ambient air temperature (dry bulb)</td>
<td></td>
</tr>
<tr>
<td>maximum</td>
<td>°C</td>
</tr>
<tr>
<td>minimum</td>
<td>°C</td>
</tr>
<tr>
<td>Electrical specifications</td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>voltage</td>
</tr>
<tr>
<td>type</td>
<td>-</td>
</tr>
<tr>
<td>frequency</td>
<td>-</td>
</tr>
<tr>
<td>Electrical power absorption</td>
<td>nominal</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP</td>
</tr>
<tr>
<td>Installation data</td>
<td></td>
</tr>
<tr>
<td>Gas consumption</td>
<td>methane G20 (nominal)</td>
</tr>
<tr>
<td>methane G20 (min)</td>
<td>m³/h</td>
</tr>
<tr>
<td>G25 (nominal)</td>
<td>m³/h</td>
</tr>
<tr>
<td>G25 (min)</td>
<td>m³/h</td>
</tr>
<tr>
<td>G30 (nominal)</td>
<td>kg/h</td>
</tr>
<tr>
<td>G30 (min)</td>
<td>kg/h</td>
</tr>
<tr>
<td>G31 (nominal)</td>
<td>kg/h</td>
</tr>
<tr>
<td>G31 (min)</td>
<td>kg/h</td>
</tr>
</tbody>
</table>

(1) For flows other than nominal see Design Manual, Pressure losses Paragraph.
Transport and Positioning

<table>
<thead>
<tr>
<th></th>
<th>AY00-120</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx emission class</td>
<td></td>
</tr>
<tr>
<td>NOx emission</td>
<td>ppm</td>
</tr>
<tr>
<td>CO emission</td>
<td>ppm</td>
</tr>
<tr>
<td>Minimum storage temperature</td>
<td>°C</td>
</tr>
<tr>
<td>Maximum water pressure in operation</td>
<td>bar</td>
</tr>
<tr>
<td>Maximum flow flue condensate</td>
<td>l/h</td>
</tr>
<tr>
<td>Water content inside the apparatus</td>
<td></td>
</tr>
<tr>
<td>Water fitting</td>
<td>type</td>
</tr>
<tr>
<td></td>
<td>thread</td>
</tr>
<tr>
<td>Gas connection</td>
<td>type</td>
</tr>
<tr>
<td></td>
<td>thread</td>
</tr>
<tr>
<td>Fume outlet</td>
<td>diameter (Ø) mm</td>
</tr>
<tr>
<td></td>
<td>residual head Pa</td>
</tr>
<tr>
<td></td>
<td>product configuration</td>
</tr>
<tr>
<td>Type of installation</td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>(1) For flows other than nominal see Design Manual, Pressure losses Paragraph.</td>
<td></td>
</tr>
</tbody>
</table>

2 TRANSPORT AND POSITIONING

2.1 WARNINGS

Damage from transport or installation

The manufacturer shall not be liable for any damage during appliance transport and installation.

On-site inspection

- Upon arrival at the site, ensure there is no transport damage on packing or metal panels.
- After removing the packing materials, ensure the appliance is intact and complete.

Packing

- Only remove the packing after placing the appliance on site.
- Do not leave parts of the packing within the reach of children (plastic, polystyrene, nails...) since they are potentially dangerous.

Weight

- The crane and lifting equipment must be suitable for the load.
- Do not stand under suspended loads.

2.2 HANDLING

Handling and lifting

- Always handle the appliance in its packing, as delivered by the factory.
- Do not remove the protective cap on the top panel as this can allow dirt and water to enter the interior of the appliance.
- Comply with safety regulations at the installation site.

In the event of handling with forklift or pallet truck, comply with the handling instructions shown on the packing.

2.3 APPLIANCE POSITIONING

Where to install the appliance

- It can be installed either inside a suitable technical room, or outside buildings, out of the dripping line of rain gutters or the like. It does not require protection from weathering.
- The appliance may be installed at ground level, on a terrace or on a roof, compatibly with its dimensions and weight.
- The appliance’s flue gas exhaust must not be immediately close to openings or air intakes of buildings, and must comply with environmental regulations.
- No obstruction or overhanging structure (e.g. protruding roofs, eaves, balconies, ledges, trees) may obstruct the exhaust fumes outlet at the top of the appliance.
- Do not install near the exhaust of flues, chimneys or hot polluted air. In order to work correctly, the appliance needs clean air.
- The installation premises must meet all requirements set forth by laws, standards and regulations of the Country and place of installation concerning gas appliances.

2.4 MINIMUM CLEARANCE DISTANCES

Distances from combustible or flammable materials

- Keep the appliance away from combustible or flammable materials or components, in compliance with applicable regulations.

Clearances around the appliance

The minimum clearance distances shown in Figure 2.1 p. 13 (bar any stricter regulations) are required for safety, operation and maintenance.
3 HEATING ENGINEER

3.1 WARNINGS

General warnings

Read the warnings in Chapter III.1 p. 4, providing important information on regulations and on safety.

Compliance with installation standards

Installation must comply with applicable regulations in force, based on the installation Country and site, in matters of safety, design, implementation and maintenance of:
- heating systems;
- gas systems;
- flue gas exhaust;
- flue gas condensate discharge.

Installation must also comply with the manufacturer’s provisions.

3.2 INSTALLATION

Primary and secondary circuit

The appliance is provided with an internal heat exchanger who separates the system in two parts:
- water circuit inside the appliance (inside);
- system water circuit (primary).

In many cases it is advisable to divide the hydraulic system into two parts, primary and secondary circuit, uncoupled by a hydraulic separator, or possibly by a tank that also acts as inertial volume/thermal inertia.

3.3 HYDRAULIC CONNECTIONS

Plumbing fittings

on the right, at the bottom, connection plate (Figure 1.2 p. 8).

- A (= out) 1 1/4” F - WATER OUTLET (m = outlet to the system);
- B (= in) 1 1/4” F - WATER INLET (r = return from the system).

Hydraulic pipes, materials and features

- Use pipes for heating/cooling systems, protected from weathering, insulated for thermal dispersion.

Pipe cleaning

- Before connecting the appliance, accurately wash the water and gas piping and any other system component, removing any residue.

Minimum components of primary water circuit

- Always provide, near the appliance: on water piping, both output and input (m/r)
 - 2 ANTIVIBRATION JOINTS on water fittings;
 - 2 PRESSURE GAUGES;
 - 2 ISOLATION BALL VALVES;
 - on the input water piping (r)
 - 1 SEPARATOR FILTER;
 - 1 FLOW ADJUSTMENT VALVE, if the circulating pump is constant flow;
 - 1 WATER CIRCULATION PUMP, towards the appliance;
 - on the output water piping (m)
 - 1 EXPANSION TANK of the individual unit.

2.5 MOUNTING BASE

Mounting base constructive features

- Place the appliance on a levelled flat surface made of fireproof material and able to withstand its weight.

(1) - installation at ground level

- Failing a horizontal supporting base, make a flat and levelled concrete base, at least 100-150 mm larger than the appliance dimensions per side.

(2) - installation on terrace or roof

- The structure of the building must support the total weight of the appliance and the supporting base.
- If necessary, provide a maintenance walkway around the appliance.

Anti-vibration connections

- It is advisable to use flexible connections (anti-vibration joints) between the appliance and the hydraulic and gas supply pipes.
The appliance is equipped with its own expansion tank and safety valve exclusively dedicated to the machine’s internal circuit. The system circuit thus requires a suitable expansion tank to be installed.

3.4 WATER CIRCULATION PUMP

The circulation pump (flow and head) must be selected and installed based on pressure losses of plumbing/primary circuit (piping + components + exchange terminals + appliance). For the appliance’s pressure losses refer to Table 1.1 p. 11 and Design Manual.

3.5 ANTI-ICING FUNCTION

Active anti-icing self-protection

The appliance is equipped with an active antifreeze self-protection system to prevent icing. The anti-icing function (activated by default) automatically starts the primary circulation pump and, if required, the burner too, when the outside temperature approaches zero.

The function is double, both for the water circuit inside the appliance, and for the system’s water circuit.

The function concerning the internal circuit cannot be disabled as it is also used to protect the electronic components.

Electrical and gas continuity

The active anti-icing self-protection is only effective if the power and gas supplies are assured. Otherwise, anti-icing liquid might be required.

3.6 ANTI-ICING LIQUID

Precautions with glycol

The manufacturer disclaims any liability for any damage caused by improper glycol use.

- Always check product suitability and its expiry date with the glycol supplier. Periodically check the product’s preservation state.
- Do not use car-grade anti-icing liquid (without inhibitors), nor zinc-coated piping and fittings (incompatible with glycol).
- Glycol modifies the physical properties of water (density, viscosity, specific heat...). Size the piping, circulation pump and thermal generators accordingly.
- With automatic system water filling, a periodic check of the glycol content is required.

With high glycol percentage (> 20...30%)

If the glycol percentage is ≥30% (for ethylene glycol) or ≥20% (for propylene glycol) the TAC must be alerted before first start-up.

When producing DHW by DHW buffer tank, use propylene glycol only.

Type of anti-icing glycol

- Inhibited type glycol is recommended to prevent oxidation phenomena.

Glycol effects

The Table 3.1 p. 14 shows, indicatively, the effects of using a glycol depending on its %.

<table>
<thead>
<tr>
<th>GLYCOL %</th>
<th>WATER–GLYCOL MIXTURE FREEZING TEMPERATURE</th>
<th>PERCENTAGE OF INCREASE IN PRESSURE DROPS</th>
<th>LOSS OF EFFICIENCY OF UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>-3°C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>-5°C</td>
<td>6,0%</td>
<td>0,5%</td>
</tr>
<tr>
<td>20</td>
<td>-8°C</td>
<td>8,0%</td>
<td>1,0%</td>
</tr>
<tr>
<td>25</td>
<td>-12°C</td>
<td>10,0%</td>
<td>2,0%</td>
</tr>
<tr>
<td>30</td>
<td>-15°C</td>
<td>12,0%</td>
<td>2,5%</td>
</tr>
<tr>
<td>35</td>
<td>-20°C</td>
<td>14,0%</td>
<td>3,0%</td>
</tr>
<tr>
<td>40</td>
<td>-25°C</td>
<td>16,0%</td>
<td>4,0%</td>
</tr>
</tbody>
</table>
Water circuit inside the appliance
The water circuit inside the appliance is factory charged to 2 bar with a water/glycol mix which enables the appliance to be safely stored down to -30 °C.
You must always ensure adequate glycol antifreeze content.

3.7 SYSTEM WATER QUALITY

Responsibility of the user/operator/installer
The installer, operator and user must assure system water quality (Table 3.2 p. 15). Failure to comply with the manufacturer’s guidelines may affect operation, integrity and life of the appliance, voiding the warranty.

System water features
Free chlorine or water hardness may damage the appliance. Adhere to the chemical-physical parameters in Table 3.2 p. 15 and the regulations on water treatment for residential and industrial heating systems.

Table 3.2 Chemical and physical parameters of water

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>UNIT OF MEASUREMENT</th>
<th>ALLOWABLE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>/</td>
<td>> 7 (1)</td>
</tr>
<tr>
<td>Chlorides</td>
<td>mg/l</td>
<td>< 1,25 (2)</td>
</tr>
<tr>
<td>Total hardness (CaCO₃)</td>
<td>°f</td>
<td>< 15</td>
</tr>
<tr>
<td>Iron</td>
<td>mg/kg</td>
<td>< 0,5 (3)</td>
</tr>
<tr>
<td>Copper</td>
<td>mg/kg</td>
<td>< 0,1 (3)</td>
</tr>
<tr>
<td>Aluminium</td>
<td>mg/l</td>
<td>< 1</td>
</tr>
<tr>
<td>Langelier’s index</td>
<td>/</td>
<td>0,0-0,4</td>
</tr>
</tbody>
</table>

HARMFUL SUBSTANCES

- Free chlorine mg/l < 0,2 (3)
- Fluorides mg/l < 1
- Sulphides ABSENT

(1) with aluminium or light alloys radiators, pH must also be lower than 8 (in compliance with applicable rules).
(2) value referred to the maximum water temperature of 80 °C.
(3) in compliance with applicable rules.

Water topping up
The chemical-physical properties of the system’s water may alter over time, resulting in poor operation or excessive topping up.
▶ Ensure there are no leaks in the installation.
▶ Periodically check the chemical-physical parameters of the water, particularly in case of automatic topping up.

Chemical conditioning and washing

- Water treatment/conditioning or system washing carried out carelessly may result in risks for the appliance, the system, the environment and health.
- Contact specialised firms or professionals for water treatment or system washing.
- Check compatibility of treatment or washing products with operating conditions.
- Do not use aggressive substances for stainless steel or copper.
- Do not leave washing residues.

3.8 INSTALLATION FILLING

How to fill up the system
After completing all water, electrical and gas connections:
1. Pressurise (at least 1.5 bar) and vent the hydraulic circuit.
2. Let water flow (with appliance off).
3. Check and clean the filter on the inlet pipe.
4. Repeat items 1, 2 and 3 until the pressure has stabilised (at least 1.5 bar).

To vent the system do not use the appliance’s vent, exclusively intended for the internal exchanger (see detail A Figure 3.2 p. 16).

Water circuit inside the appliance
The water circuit inside the appliance is factory charged to 2 bar with a water/glycol mix which enables the appliance to be safely stored down to -30 °C.
The pressure gauge (detail B) will display the charging pressure when the front panel of the appliance is removed. The optimal pressure value is between 1 and 2 bar.

How to restore the charge of the water circuit inside the appliance

Figure 3.2 p. 16
1. Remove the front panel.
2. Identify any leakage points and restore the tightness (e.g. seal replacement).
3. Remove the cap closing the filling cock and fix the supplied hose fitting (detail D).
4. Open the filling cock, with a flathead screwdriver, and charge the circuit with enough glycol solution to achieve the specified optimal pressure range.
5. Open the cap on the automatic bleed valve on the internal circuit and run the machine for 3 minutes to bleed the circuit.
6. If there still is air, manually open the venting valve.
7. Stop the circuit operating, close the charging cock with a flathead screwdriver and close the automatic bleed valve on the circuit.
8. Remove the hose fitting and reposition the cap of the filling cock.
9. Close the front panel with its retainer bolts.
10. Restore the appliance and put away the union.
3.9 FUEL GAS SUPPLY

Gas connection

▶ 3/4" M on the right, at the bottom, connection plate (Figure 1.2 p. 8).
▶ Install an anti-vibration connection between the appliance and the gas piping.

Mandatory shut-off valve

▶ Provide a gas shut-off valve (manual) on the gas supply line, next to the appliance, to isolate it when required.
▶ Perform connection in compliance with applicable regulations.

Gas pipes sizing

The gas pipes must not cause excessive load losses and, consequently, insufficient gas pressure for the appliance.

Supply gas pressure

The appliance’s gas supply pressure, both static and dynamic, must comply with Table 3.3 p. 16, with tolerance ± 15%.

Non compliant gas pressure (Table 3.3 p. 16) may damage the appliance and be hazardous.

Table 3.3 Gas network pressure

<table>
<thead>
<tr>
<th>AY00-120</th>
<th>Countries of destination</th>
<th>Gas supply pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>II2GI</td>
<td>AL, BG, CZ, EE, FI, GR, LT, NO, SE, SI, SK, TR</td>
<td>20</td>
</tr>
<tr>
<td>II2GI</td>
<td>AT, CH</td>
<td>20</td>
</tr>
<tr>
<td>II2GI</td>
<td>HR, MK, RO</td>
<td>25</td>
</tr>
<tr>
<td>II2GI</td>
<td>IT</td>
<td>20</td>
</tr>
<tr>
<td>II2GI</td>
<td>HR, MK, RO</td>
<td>25</td>
</tr>
<tr>
<td>II2GI</td>
<td>HU</td>
<td>25</td>
</tr>
<tr>
<td>II2GI</td>
<td>LU</td>
<td>20</td>
</tr>
<tr>
<td>II2GI</td>
<td>DE</td>
<td>20</td>
</tr>
<tr>
<td>II2GI</td>
<td>FR</td>
<td>20</td>
</tr>
<tr>
<td>II2GI</td>
<td>PL</td>
<td>20</td>
</tr>
<tr>
<td>II2GI</td>
<td>20</td>
<td>37</td>
</tr>
<tr>
<td>II2GI</td>
<td>BE</td>
<td>20</td>
</tr>
<tr>
<td>II2GI</td>
<td>LV</td>
<td>20</td>
</tr>
<tr>
<td>II2GI</td>
<td>MT</td>
<td>30</td>
</tr>
<tr>
<td>II2GI</td>
<td>CY, MT</td>
<td>30</td>
</tr>
<tr>
<td>II2GI</td>
<td>IS</td>
<td>30</td>
</tr>
</tbody>
</table>

Vertical pipes and condensate

▶ Vertical gas pipes must be fitted with siphon and discharge of the condensate that may form inside the pipe.
▶ If necessary, insulate the piping.
LPG pressure reducers
With LPG the following must be installed:
▶ a first stage pressure reducer, close to the liquid gas tank;
▶ a second stage pressure reducer, close to the appliance.

3.10 COMBUSTION PRODUCTS EXHAUST

Flue gas exhaust kit
The appliance, supplied in B53P configuration, is standard supplied with a DN80 flue gas kit, to be set up by the installer.
The fitting (DN80) for connecting the flue gas kit is located in the upper part of the appliance with vertical outlet.

How to install the flue gas kit

Figure 3.3 Flue gas exhaust kit

1. Fix the terminal (detail A) on the DN 80 extension pipe (detail B) inside the dedicated socket.
2. Fit the rain cover (detail C) onto the DN 80 extension pipe (detail B).
3. Remove the protective cap on the top panel of the appliance.
4. Fix the kit (details A+B+C) into the dedicated socket of the DN 80 flanged union which can be accessed via the appliance’s top panel (detail D).

The cap prevents water and foreign bodies entering the appliance before the fumes kit is installed. The cap should thus be removed only when the kit itself has been fully assembled and installed.

Possible flue
If necessary, the appliance may be connected to a flue.
▶ To size the flue refer to Table 1.1 p. 11 and Design Manual.
▶ If several appliances are connected to a single flue, it is obligatory to install a check valve on the exhaust of each.
▶ The flue must be designed, sized, tested and constructed by a skilled form, with materials and components complying with the regulations in force in the country of installation.
▶ Always provide a socket for flue gas analysis, in an accessible position.

3.11 FLUE GAS CONDENSATE DISCHARGE
The AY00-120 unit is a condensing appliance and therefore produces condensation water from combustion flue gases.

Condensate acidity and exhaust regulations
The flue gas condensate contains aggressive acid substances. Refer to applicable regulations in force for condensate exhaust and disposal.
▶ If required, install an acidity neutraliser of adequate capacity.

Do not use gutters to discharge the condensate
Do not discharge the fume condensate in gutters, due to
the risk of materials corrosion and ice formation.

Flue gas condensate connection
The fitting for flue gas condensate discharge is located on the right side of the appliance (Figure 1.2 p. 8) at the connection plate.

Flue gas condensate discharge manifold
To make the condensate discharge manifold:
► Size the ducts for maximum condensation capacity (Table 1.1 p. 11).
► Use plastic materials resistant to acidity pH 3-5.
► Provide for min. 1% slope, i.e. 1 cm for each m of the length (otherwise a booster pump is required).
► Prevent icing.
► Dilute, if possible, with domestic waste water (e.g. bathrooms, washing machines, dish washers...), basic and neutralizing.

Charging the siphon
Robur uses condensate collection siphons with float, which blocks the passage of fumes and odours deriving therefrom in case the equipment remains turned off for a long time and the liquid contained in the siphon evaporates or in case of commissioning. Thanks to this system, it is not necessary to fill the siphon at commissioning.

4 ELECTRICAL INSTALLER

4.1 WARNINGS

General warnings
Read the warnings in Chapter III.1 p. 4, providing important information on regulations and on safety.

Compliance with installation standards
Installation must comply with applicable regulations in force, based on the installation Country and site, in matters of safety, design, implementation and maintenance of electrical systems.
Installation must also comply with the manufacturer’s provisions.

Live components
► After placing the appliance in the final position, and prior to making electrical connections, ensure not to work on live components.

Earthing
► The appliance must be connected to an effective earthing system, installed in compliance with regulations in force.
► It is forbidden to use gas pipes as earthing.

Cable segregation
Keep power cables physically separate from signal ones.

Do not use the power supply switch to turn the appliance on/off
► Never use the external isolation switch (GS) to turn the appliance on and off, since it may be damaged in the long run (occasional black outs are tolerated).
► To turn the appliance on and off, exclusively use the suitably provided control device (DDC, CCP/CCI or external request).

Control of water circulation pump
The water circulation pump of the water/primary circuit must mandatorily be controlled by the appliance’s electronic boards (AY10 + S70). It is not admissible to start/stop the circulating pump with no request from the appliance.

4.2 ELECTRICAL SYSTEMS

Electrical connections must provide:
► (a) power supply (Paragraph 4.3 p. 19);
► (b) control system (Paragraph 4.4 p. 19).

How to perform connections
All electrical connections must be made in the appliance’s Electrical Board (Figure 4.1 p. 19):
1. Ensure the appliance’s Electrical Panel is not live.
2. Remove the front panel of the appliance and the cover of the Electrical Board.
3. Run the cables through the suitable holes in the Connection Plate.
4. Run the cables through the suitable cable glands in the Electrical Board.
5. Identify the appropriate connection terminals.
6. Perform the connections.
7. Close the Electrical Panel and fit the front panel back on.
4.3 ELECTRICAL POWER SUPPLY

Power supply line
Provide (by the installer) a protected single phase line (230 V 1-N 50 Hz) with:
- 1 three-pole cable type FG7(O)R 3Gx1.5;
- 1 two-pole switch with 2 2A type T fuses, (GS) or 1 4A mag-netothermic breaker.

The switches must also provide disconnect capability, with min contact opening 3 mm.

How to connect the power supply

To connect the three-pole power supply cable (Figure 4.2 p. 19):

1. Access the Electrical Board of the appliance according to the Procedure 4.2 p. 18.
2. Connect the three wires to terminal board (MC) in the elec-trical panel on the machine.
3. Provide the earth lead-in wire longer than live ones (last to be torn in the event of accidental pulling).

4.4 SET-UP AND CONTROL

Control systems, options (1) (2) (3)
Three separate adjustment systems are provided, each with specific features, components and diagrams (see 4.4 p. 20, 4.5 p. 21):
- System (1), with DDC control (with CAN-BUS connection).
- System (2), with CCP/CCI control (with CAN-BUS connection).
- System (3), with an external request.

CAN-BUS communication network
The CAN-BUS communication network, implemented with the cable of the same name, makes it possible to connect and re-motely control one or more Robur appliances with the DDC or CCP/CCI control devices.
It entails a certain number of serial nodes, distinguished in:
- intermediate nodes, in variable number;
- terminal nodes, always and only two (beginning and end);
Each component of the Robur system, appliance (GAHP, GA, AY, ...) or control device (DDC, RB100, RB200, CCI,...), corresponds to a node, connected to two more elements (if it is an intermedi-ate node) or to just one other element (if it is a terminal node) through two/one CAN-BUS cable section/s, forming an open linEAR communication network (never star or loop-shaped).

CAN-BUS signal cable
The DDC controller is connected to the appliance through the CAN-BUS signal cable, shielded, compliant to Table 4.1 p. 20 (admissible types and maximum distances).
For lengths ≤200 m and max 4 nodes (e.g. 1 DDC + 3 GAHP), a simple 3x0.75 mm shielded cable may even be used.
Table 4.1 CAN BUS cables type

<table>
<thead>
<tr>
<th>CABLE NAME</th>
<th>SIGNALS / COLOR</th>
<th>MAX LENGTH</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robur</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROBUR NETBUS</td>
<td>H= BLACK</td>
<td>450 m</td>
<td>Ordering Code OCVO008</td>
</tr>
<tr>
<td>Honeywell SDS 1620</td>
<td></td>
<td></td>
<td>In all cases the fourth conductor should not be</td>
</tr>
<tr>
<td>Belden 3086A</td>
<td>H= BLACK</td>
<td>450 m</td>
<td>used</td>
</tr>
<tr>
<td>TURCK type 530</td>
<td>H= BLACK</td>
<td>450 m</td>
<td></td>
</tr>
<tr>
<td>DeviceNet Mid Cable</td>
<td>H= BLUE</td>
<td>450 m</td>
<td></td>
</tr>
<tr>
<td>Honeywell SDS 2022</td>
<td>H= BLACK</td>
<td>200 m</td>
<td></td>
</tr>
</tbody>
</table>

How to connect the CAN BUS cable to the appliance

To connect the CAN-BUS cable to the AY10 electronic board (Paragraph 1.4 p. 10), located in the Electrical Panel inside the appliance (Figure 4.3 p. 20):

1. Access the Electrical Board of the appliance according to the Procedure 4.2 p. 18;
2. Connect the CAN-BUS cable to terminals GND, L and H (shielding/earthing + two signal conductors);
3. Place the CLOSED J1 Jumpers (Detail A) if the node is terminal (one connected CAN-BUS cable section only), or OPEN (Detail B) if the node is intermediate (two connected CAN-BUS cable sections);
4. Connect the DDC to the CAN-BUS cable according to the instructions of the following Paragraphs and DDC Manual.

Figure 4.3 Electrical wiring diagram - Connection cable CAN BUS to electronic board

Figure 4.4 Connexion câble CAN BUS for plants with one unit

AY configuration (AY10) + DDC
(System (1) see also Paragraph 1.5 p. 10)
External request
(System (3) see also Paragraph 1.5 p. 10)
It is required to arrange:
▶ request device (e.g. thermostat, clock, button, ...) fitted with a voltage-free NO contact.

How to connect the external request
Connection of external request is effected on the AY10 board located in the Electrical Panel inside the appliance (Figure 4.5 p. 21).
1. Access the Electrical Board of the appliance according to the Procedure 4.2 p. 18.
2. Connect the voltage free contact of the external device (Detail CS), through two wires, to terminals R and W (respectively: common 24 V AC and heating request) of AY10 electronic board.

Figure 4.5 Wiring diagram, external heating enable connection

4.5 WATER CIRCULATION PUMP
It must be mandatorily controlled from the S70 electronic board. The diagram in Picture 4.6 p. 22 is for pumps < 700 W. For pumps > 700 W it is required to add a control relay and set up Jumper J2 OPEN.

How to connect the CONSTANT FLOW circulating pump
Access the Electrical Board of the appliance according to the Procedure 4.2 p. 18:
1. connect to S70 board, to terminals NO-Contact;
2. Jumper J2 CLOSED.
First start-up

Figure 4.6 Water circulation pump connection - Connection of plant water circulation pumps (power absorption less than 700W), controlled directly by the appliance.

<table>
<thead>
<tr>
<th>SCH</th>
<th>electronic board</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO contact</td>
<td>system water circulating pump control terminals (voltage-free normally open contact, maximum absorbed power 700 W)</td>
</tr>
<tr>
<td>J2</td>
<td>system water circulating pump control jumper</td>
</tr>
</tbody>
</table>

SCH
- SCH: System control board
- NO: Normally Open
- J2: Jumper

Components NOT SUPPLIED
- PW: Water pump < 700 W
- MC: 230VAC power supply terminal block

5 FIRST START-UP

First Start-Up entails checking/setting up the combustion parameters and may exclusively be carried out by a Robur TAC. NEITHER the user NOR the installation technician is authorised to perform such operations, under penalty of voiding the warranty.

5.1 PRELIMINARY CHECKS

Preliminary checks for First start-up

Upon completing installation, before contacting the TAC, the installer must check:

- water-heating, electrical and gas systems suitable for the required capacities and equipped with all safety and control devices required by the regulations in force;
- absence of leaks in the water and gas systems;
- type of gas for which the appliance is designed (methane or LPG);
- supply gas pressure complying with the values of Table 3.3 p. 16, with max tolerance ±15%;
- Power supply mains complying with the appliance’s rating plate data;
- appliance correctly installed, according to the manufacturer’s instructions;
- system installed in a workmanlike manner, according to national and local regulations.

Abnormal or hazardous installation situations

Should any abnormal or hazardous installation situations be found, the TAC shall not perform First start-up and the appliance shall not be commissioned. These situations may be:

- failed compliance with minimum clearances;
- insufficient distance from combustible or flammable materials;
- conditions that do not warrant access and maintenance in safety;
- appliance switched on/off with the main switch, instead of the control device provided (DDC, CCP/CCI or external request);
- appliance defects or faults caused during transport or installation;
- gas smell;
- non-compliant mains gas pressure;
- non-compliant combustion air and flue gas exhaust ducts;
- all situations that may involve operation abnormalities or are potentially hazardous.

Non-compliant system and corrective actions

Should the TAC find any non-conformities, the user/installer is bound to perform any corrective procedures required by the TAC. After performing the remedial actions (the installer’s responsibility), if the TAC deems that safety and conformity conditions
are in place, "First start-up" may be effected.

6 NORMAL OPERATION

This section is for the end user.

6.1 WARNINGS

General warnings

Prior to using the appliance carefully read the warnings in Chapter III.1 p. 4, providing important information on regulations and on safety.

First start-up by TAC

First start-up may exclusively be carried out by a Robur TAC (Chapter 5 p. 22).

Never power the appliance off while it is running

NEVER power the appliance off while it is running (except in the event of danger, Chapter III.1 p. 4), since the appliance or system might be damaged.

6.2 SWITCH ON AND OFF

Routine switching on/off

The appliance may exclusively be switched on/off by means of the suitably provided control device (DDC, CCP/CCI or external requests).

Do not Switch On/Off with the power supply switch

Do not switch the appliance on/off with the power supply switch. This may be harmful and dangerous for the appliance and for the system.

Inspections before switching on

Before switching on the appliance, ensure that:

- gas cock open;
- appliance electrical power supply (main switch (GS) ON);
- DDC or CCP/CCI power supply (if present);
- water circuit ready.

How to switch on/off

- If the appliance is controlled by a DDC or by a CCP/CCI (systems (1) and (2) see Paragraph 1.5 p. 10), refer to the respective manuals.
- If the appliance is controlled by external request (e.g. thermostat, clock, button, ... with voltage-free NO contact), (system (3) see Paragraph 1.5 p. 10), the appliance is switched on/off by the ON/OFF positions of the external control device.

After switching on with the control, in normal operating conditions, the appliance starts/stops automatically according to the user’s thermal needs, supplying hot water at the programmed temperature.

Although the external request is in the "ON" position, this does not mean the appliance will start immediately, but it will only start when there are actual service demands.

6.3 MESSAGES ON THE DISPLAY

4 digit display

AY10 board of the appliance (Paragraph 1.4 p. 10, Figure 1.4 p. 10) is fitted with a 4-digit display, visible through the sight glass of the front panel.

- When the appliance is powered on, all the LEDs switch on for 3 sec, then the board name is displayed.
- After another 15 sec, the appliance is ready to operate.

Signals in normal operation

- During normal operation, water temperature values alternate on the display: output,input and the difference between the two.

Signals in the event of fault

In the event of fault the display blinks indicating an operational code (first letter on the display: “E” = error, or “U” = warning)

- If it is only a temporary warning, the appliance may continue working.
- If it is a permanent error or warning the appliance stops. (Table 8.1 p. 28).

6.4 ELECTRONIC ADJUSTMENT ON THE MACHINE – MENUS AND PARAMETERS

Firmware

The instructions on the use of the AY10 electronic board concern the firmware version 3.106.

The electronic board (AY10) of the appliance

Figure 6.1 AY00-120 unit electronic board (AY10+S70)

Display

The 4-digit display of the AY10 board (detail A Figure 6.1 p. 23) is as follows:
To access the menus and parameters of the AY10 board, use menu "2." control, to execute flame control unit reset operation.

Menu "4." , "5." and "6." are password-protected. These are always kept for future use.

Scroll the menu list, or a series of parameters in a menu (by turning);

Select a menu or a parameter (by pressing);

Modify and confirm the setting of a parameter (turning and pressing);

Execute a command (by pressing);

Exit a menu and go back to the higher level by selecting the letter "E" which is displayed at the end of the menu list or of a series of parameters in a menu.

The letter "E" is displayed at the end of the menu list or of a series of parameters in a menu, and indicates the exit to go back to the higher level by pressing the knob.

Menus and Parameters

The menus may be display only (functional data or parameters), display and setting (parameters) or control (reset)

Menu for the user (but for the installer and TAC as well)

- the menu "0." display only, for functional data detected in real time;
- the menu "1." display only, for current values of appliance parameters;
- menu "2." control, to execute flame control unit reset operations, reset errors (Paragraph 6.6 p. 25);
- menu "3." display and setting, to set the value of some system parameters (e.g. water set point temperature); the values are initialised by the TAC at First Switch-On.

It is accessed without password.

Menu for the installer or TAC (not accessible to the user)

- Menu "4." , "5." and "6." are password-protected. These are specific sections, exclusively intended for skilled personnel (installer or TAC). For information see the technical Assistant Manual.
- Menu "7." display only and intended for the manufacturer.
- Menu "8." is empty, it may be selected but not used.

Special key for the knob

- To access the menus and parameters of the AY10 board, use the special standard supplied key, included in the kit provided with the appliance. The key allows the knob to be operated through the suitable hole in the Electrical Panel cover, operating safely away from live components.
- Always keep the key for future uses.

How to access the Menus and Parameters

Before Starting:
(1) Power supply switch "ON";
(2) Display of the AY10 board showing in sequence the detected water temperature data (if the appliance is in normal operation), or the flashing malfunction and failure codes (if the appliance is in failure).

To access the menus and parameters of the AY10 board, proceed as follows:

1. Remove the front panel by removing the fixing screws.
2. Remove the cover of the electrical panel to access the AY10 board knob.
3. Act on the knob by means of the special key through the suitable hole.
4. Press the knob once to display the menus: the first menu is displayed, "0." (= menu 0).
5. Turn the knob clockwise to scroll down and display the other/subsequent menus; the menu numbers will be displayed in order; "1." , "2." , ..., "6." or "E" (= exit).
6. Select the menu of interest (e.g. display "2.____" = menu 2) by pressing the knob; the first parameter code will be displayed, in menu order (e.g. display "2.20" = parameter 20 in menu 2).
7. Turn the knob clockwise to scroll down the other parameters in the menu; the codes will be displayed in order (e.g. display "2.20", "2.21", ... "2.25" = parameters 20, 21, ... 25 in menu 2), or letter "E" (= exit) at the end of the list.
8. Select the parameter of interest (e.g. with code 161 in menu 3) by pressing the knob; the figure previously assigned to the parameter will be displayed, read only or to be set (e.g. the figure "45" for parameter 161 in menu 3 = water temperature set-point at 45 °C); if instead of a figure/setting it is a command, a flashing code is displayed (e.g. "reS1" for the flame block reset command).
9. Press the knob to reconfirm the figure; or rotate the knob to modify the figure, and press at the end to confirm or set the new figure; if however, it is a matter of controlling an appliance operation, press the knob to execute it.
10. To exit a parameter menu or the menu list and go back to the higher level, turn the knob to display the letter "E" for exit, then press the knob again.
11. Place the cover back on the electrical panel opening and fit the appliance’s front panel back on.

6.5 MODIFYING SETTINGS

Modify the settings through the DDC or CCP/CCI

If the appliance is connected to the DDC or to the CCP/CCI control, refer to the relevant manual to modify settings.

How to raise/lower the water temperature set-point

The water temperature set-point establishes the delivery temperature to the system (water output from the appliance), or return from the system (water input in the appliance). The temperature is pre-set by the TAC upon First Switch-On.

If the appliance is not connected to a DDC or CCP/CCI control, to raise/lower the water temperature setpoint with the AY10 board, proceed as follows:

1. Access menu 3 under parameter 161 (= water temperature set-point) by rotating and pressing the knob; "3.161" must be displayed (procedure Paragraph 6.4 p. 23);
2. Display the parameter value by pressing the knob; the previously set value is displayed (from 25 to 80 °C); to reconfirm the pre-existing value press the knob again, otherwise go to step 3.
3. Turn the knob to modify the value, increasing or decreasing it, and press it to set the new value;
4. Exit menu 3, and from the menu list, by selecting and pressing letter "E" twice, and go back to the normal
display of detected temperature data.

Do not modify complex settings

Specific technical and system knowledge is required for complex settings. Contact a TAC.

Thermal input setting

The appliance is Range Rated. The thermal power can be adjusted by regulating the gas flow. The adjustment is made with parameter 180, from a maximum power of 34.9 kW to a minimum power of 8.0 kW. If multiple appliances are connected to the same system, the parameter value must be the same for all appliances.

6.6 RESTARTING A LOCKED-DOWN UNIT

Fault signals on the display

In the event of locked-down appliance, an operational code flashes on the display (first green figure on the left, letter “U” = warning or “E” = error).

- To restart the appliance you must know and perform the procedure concerning the issue signalled and identified by the code (Paragraph 8.1 p. 28).
- Only act if you are familiar with the issue and with the procedure (technical expertise and professional qualifications might be required).
- If you do not know the code, the problem, or the procedure, or you do not have sufficient skills, and in any case of doubt, contact the TAC.

Locked-down appliance

An external intervention (reset or repair) is required due to an appliance fault or problem with the system.

- A reset may be enough for a temporary and provisional anomaly.
- For a fault or breakdown, alert the maintenance technician or TAC.

6.7 EFFICIENCY

For increased appliance efficiency:

- Adjust the maximum water temperature to the actual system requirements;
- Reduce repeated switch-ons to the minimum (low loads);
- Program appliance activation for actual periods of use;
- Keep water and air filters on plumbing and ventilation systems clean.

7 MAINTENANCE

7.1 WARNINGS

Correct maintenance prevents problems, assures efficiency and keeps running costs low.

Maintenance operations described herein may exclusively be performed by the TAC or skilled maintenance technician.

Any operation on internal components may exclusively be performed by the TAC.

Before performing any operation, switch off the appliance by means of the control device (DDC, CCP/CCI or external request) and wait for the end of the switching off cycle, then disconnect power and gas supply, by acting on the electrical disconnector and gas cock.

The efficiency checks and every other “check and maintenance operation” (see Tables 7.1 p. 26 and 7.2 p. 26) must be performed with a frequency according to current regulations or, if more restrictive, according to the provisions set forth by the manufacturer, installer or TAC.

Responsibility for efficiency checks, to be carried out for the aims of restricting energy consumption, lies with the system manager.

Environmental or operational heavy conditions

In environmental or operational conditions particularly heavy (for example: heavy-duty use of the appliance, salty environment, etc.), maintenance and cleaning operations must be more frequent.
7.2 PRE-EMPTIVE MAINTENANCE

For pre-emptive maintenance, comply with the recommendations in Table 7.1 p. 26.

Table 7.1

<table>
<thead>
<tr>
<th>Guidelines for the preventive maintenance operations</th>
<th>GAHP A</th>
<th>GAHP GS/WS</th>
<th>AY00-120</th>
<th>GA ACF</th>
<th>GAHP-AR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check of the unit</td>
<td>visually check of the general condition of the unit and of its air heat exchanger</td>
<td>√ (1)</td>
<td>-</td>
<td>-</td>
<td>√ (1)</td>
</tr>
<tr>
<td></td>
<td>check the correct operation of the device used for monitoring the water flow</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>check the % value of CO₂</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>check gas pressure to the burners</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>check that the condensate discharge is clean (if necessary, frequency of the maintenance operation must be increased)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>replace the belts after 6 years or 12,000 hours of operation</td>
<td>√</td>
<td>√</td>
<td>-</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>check/restore the pressure of the primary hydronic circuit</td>
<td>-</td>
<td>-</td>
<td>√</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>check/restore the air pressure inside of the expansion vessel of the primary hydronic circuit</td>
<td>-</td>
<td>-</td>
<td>√</td>
<td>-</td>
</tr>
<tr>
<td>Check for every DDC or CCI</td>
<td>Check that the plant is able to achieve the setpoint temperature</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>download the historical events</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

(1) It is suggested to clean the finned coil once every 4 years. (Optimal frequency of the cleaning operation is in any case strongly affected by the installation site.)

7.3 SCHEDULED ROUTINE MAINTENANCE

For scheduled routine maintenance, perform the operations in Table 7.2 p. 26, at least once every 2 years.

Table 7.2

<table>
<thead>
<tr>
<th>Routine scheduled maintenance (to be performed at least once every TWO YEARS)</th>
<th>GAHP A</th>
<th>GAHP GS/WS</th>
<th>AY00-120</th>
<th>GA ACF</th>
<th>GAHP-AR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check of the unit</td>
<td>clean the combustion chamber</td>
<td>√ (1)</td>
<td>√ (1)</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>clean the burner</td>
<td>√ (1)</td>
<td>√ (1)</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>clean the electrodes of ignition and flame sensing</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>check that the condensate discharge is clean</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>replace the silicone gasket between the front plate and the exchanger</td>
<td>-</td>
<td>-</td>
<td>√</td>
<td>-</td>
</tr>
</tbody>
</table>

(1) Only in case the analysis of combustion products is non-compliant.
4.4 p. 19).
8 DIAGNOSTICS

8.1 OPERATIVE CODES

<table>
<thead>
<tr>
<th>CODE</th>
<th>DESCRIPTION</th>
<th>Warning (u)</th>
<th>Error (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>FAULT ON RESET CIRCUIT OF FLAME CONTROL UNIT</td>
<td>NA</td>
<td>Power cycle the appliance. If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>101</td>
<td>THERMOSTAT TRIP INTERNAL CIRCUIT LIMIT</td>
<td>NA</td>
<td>Contact authorised Technical Assistance</td>
</tr>
<tr>
<td>102</td>
<td>FLUE GAS THERMOSTAT AND/OR INTERNAL EXCHANGER THERMOSTAT TRIP</td>
<td>NA</td>
<td>Contact authorised Technical Assistance</td>
</tr>
<tr>
<td>103</td>
<td>HEATING BOARD (S70) ABSENT</td>
<td>NA</td>
<td>Contact authorised Technical Assistance</td>
</tr>
<tr>
<td>105</td>
<td>AMBIENT TEMPERATURE EXCEEDING OPERATIVE LIMITS</td>
<td>NA</td>
<td>Reset is automatic when the triggering condition ceases.</td>
</tr>
<tr>
<td>106</td>
<td>AMBIENT TEMPERATURE LOWER THAN OPERATIVE LIMITS</td>
<td>NA</td>
<td>Non-blocking Warning (informative code). The code is reset automatically when the triggering condition ceases.</td>
</tr>
<tr>
<td>107</td>
<td>SYSTEM CIRCUIT WATER PRESSURE SWITCH TRIP WITH SYSTEM IN COLD MODE</td>
<td>NA</td>
<td>Reset is automatic when the triggering condition ceases.</td>
</tr>
<tr>
<td>112</td>
<td>FLAME CONTROLLER UNIT ARREST</td>
<td>Reset up to 4 attempts (in about 5 minutes).</td>
<td>Gas supply check. Reset may be performed from the DDC or from the AY10 board (menu 2, parameter 20). If the code persists or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>127</td>
<td>FAULTY INTERNAL CIRCUIT WATER PRESSURE SWITCH OR INSUFFICIENT INTERNAL CIRCUIT WATER FLOW</td>
<td>Reset is automatic when the triggering condition ceases.</td>
<td>Reset may be performed from the DDC or from the AY10 board (menu 2, parameter 21). If the code persists or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>128</td>
<td>GAS SOLENOID VALVE EXCITED DURING FLAME CONTROLLER ARREST</td>
<td>NA</td>
<td>Power off the appliance. Contact the TAC.</td>
</tr>
<tr>
<td>129</td>
<td>GAS SOLENOID VALVE WITHOUT ELECTRICAL POWER</td>
<td>NA</td>
<td>Reset may be performed from the DDC or from the AY10 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>135</td>
<td>FAULTY INTERNAL CIRCUIT DELIVERY TEMPERATURE PROBE</td>
<td>NA</td>
<td>Reset may be performed from the DDC or from the AY10 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>136</td>
<td>BLOWER FAULT</td>
<td>Reset occurs automatically 20 minutes after the code is generated.</td>
<td>Reset may be performed from the DDC or from the AY10 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>175</td>
<td>INSUFFICIENT SYSTEM CIRCUIT WATER FLOW</td>
<td>Reset is automatic when the triggering condition ceases.</td>
<td>Check and clean water filters on the system. Check for air in the system. Check water flow pump. Power cycle the appliance. Reset may be performed from the DDC or from the AY10 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>176</td>
<td>FAULTY SYSTEM CIRCUIT DELIVERY TEMPERATURE PROBE</td>
<td>NA</td>
<td>Reset may be performed from the DDC or from the AY10 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>177</td>
<td>FAULTY SYSTEM CIRCUIT RETURN TEMPERATURE PROBE</td>
<td>NA</td>
<td>Reset may be performed from the DDC or from the AY10 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>178</td>
<td>HIGH HOT OUTLET WATER TEMPERATURE</td>
<td>Reset is automatic when the triggering condition ceases.</td>
<td>NA</td>
</tr>
<tr>
<td>179</td>
<td>DEFROST FUNCTION ACTIVATED</td>
<td>Non-blocking Warning (informative code). The code clears automatically when anti-icing function execution ends.</td>
<td>NA</td>
</tr>
<tr>
<td>80</td>
<td>INCOMPLETE OR INVALID PARAMETERS</td>
<td>Contact the TAC.</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>INVALID P0 PARAMETERS</td>
<td>Reset is automatic when the triggering condition ceases.</td>
<td>Contact the TAC.</td>
</tr>
<tr>
<td>82</td>
<td>INVALID P1 PARAMETERS</td>
<td>Reset is automatic when the triggering condition ceases.</td>
<td>Contact the TAC.</td>
</tr>
<tr>
<td>84</td>
<td>FAULTY TRANSFORMER CONNECTION OR 24V AC FUSES</td>
<td>NA</td>
<td>Contact the TAC.</td>
</tr>
<tr>
<td>85</td>
<td>INCORRECT MODULE TYPES</td>
<td>NA</td>
<td>Contact the TAC.</td>
</tr>
<tr>
<td>86</td>
<td>FAULTY BOARD, ROM</td>
<td>NA</td>
<td>Contact the TAC.</td>
</tr>
</tbody>
</table>
Appendices

9 APPENDICES

9.1 PRODUCT FICHE

Figure 9.1

Table 7
COMMISSION DELEGATED REGULATION (EU) No 811/2013

Technical parameters for boiler space heaters, boiler combination heaters and cogeneration space heaters

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated heat output</td>
<td>P_{r}</td>
<td>34.9</td>
<td>kW</td>
</tr>
<tr>
<td>For boiler space heaters and boiler combination heaters:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Useful heat output</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At rated heat output and high-temperature regime (*)</td>
<td>P_{d}</td>
<td>34.4</td>
<td>kW</td>
</tr>
<tr>
<td>At 30 % of rated heat output and low-temperature regime (**)</td>
<td>P_{l}</td>
<td>8.6</td>
<td>kW</td>
</tr>
<tr>
<td>Auxiliary electricity consumption</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At full load</td>
<td>el_{ma}</td>
<td>0.185</td>
<td>kW</td>
</tr>
<tr>
<td>At partial load</td>
<td>el_{mi}</td>
<td>0.080</td>
<td>kW</td>
</tr>
<tr>
<td>In standby mode</td>
<td>P_{SB}</td>
<td>0.005</td>
<td>kW</td>
</tr>
<tr>
<td>Seasonal space heating energy efficiency</td>
<td>η_{s}</td>
<td>90.7</td>
<td>%</td>
</tr>
<tr>
<td>For boiler space heaters and boiler combination heaters:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Useful efficiency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At rated heat output and high-temperature regime (*)</td>
<td>η_{d}</td>
<td>98.6</td>
<td>%</td>
</tr>
<tr>
<td>At 30 % of rated heat output and low-temperature regime (**)</td>
<td>η_{l}</td>
<td>107.5</td>
<td>%</td>
</tr>
<tr>
<td>Other items</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standby heat loss</td>
<td>P_{aby}</td>
<td>0.058</td>
<td>kW</td>
</tr>
<tr>
<td>Ignition burner power consumption</td>
<td>P_{ign}</td>
<td>0</td>
<td>kW</td>
</tr>
<tr>
<td>Annual energy consumption</td>
<td>Q_{NE}</td>
<td>286.2</td>
<td>GJ</td>
</tr>
<tr>
<td>Sound power level, indoors</td>
<td>L_{WA}</td>
<td>- / 57.0</td>
<td>dB</td>
</tr>
</tbody>
</table>

(*) High-temperature regime means 60 °C return temperature at heater inlet and 80 °C feed temperature at heater outlet.
(**) Low temperature means for condensing boilers 30 °C, for low-temperature boilers 37 °C and for other heaters 50 °C return temperature (at heater inlet).

Additional information required by COMMISSION REGULATION (EU) No 813/2013, Table 1:
Emissions of nitrogen oxides: NO_x | 31 | mg/ kWh
Robur mission

Robur is dedicated to dynamic progression in research, development and promotion of safe, environmentally-friendly, energy-efficiency products, through the commitment and caring of its employees and partners.