Installation, use and maintenance manual

GAHP A indoor
air source gas absorption heat pump for installation in technical room

powered by gas and renewable energies
INDEX OF CONTENTS

I Introduction ......................................................... p. 4
I.1 Recipients ....................................................... p. 4
I.2 Control device .................................................... p. 4
II Symbols and definitions .......................................... p. 4
II.1 Key to symbols .................................................. p. 4
II.2 Terms and definitions ......................................... p. 4
III Warnings .............................................................. p. 4
III.1 General and safety warnings ................................. p. 4
III.2 Conformity ......................................................... p. 6
III.3 Exclusions of liability and warranty ........................ p. 6
1 Features and technical data ........................................ p. 7
1.1 Features ........................................................... p. 7
1.2 Dimensions ....................................................... p. 7
1.3 Components ..................................................... p. 9
1.4 Electrical wiring diagram ....................................... p. 12
1.5 Electronic boards ............................................... p. 13
1.6 Operation mode .................................................. p. 15
1.7 Controls ............................................................ p. 15
1.8 Technical characteristics ....................................... p. 15
2 Transport and positioning .......................................... p. 17
2.1 Warnings .......................................................... p. 17
2.2 Handling ........................................................... p. 17
2.3 Installation premises ............................................ p. 18
2.4 Minimum clearance distances ................................. p. 18
2.5 Mounting base .................................................... p. 18
3 Heating engineer ................................................... p. 18
3.1 Warnings .......................................................... p. 18
3.2 Hydraulic system ............................................... p. 19
3.3 Hydraulic connections .......................................... p. 19
3.4 Water circulation pump ......................................... p. 19
3.5 Antifreeze function .............................................. p. 20
3.6 Antifreeze liquid .................................................. p. 20
3.7 System water quality ............................................ p. 20
3.8 System filling ..................................................... p. 21
3.9 Fuel gas supply .................................................. p. 21
3.10 Combustion products exhaust ............................... p. 22
3.11 Flue gas condensate discharge ............................. p. 23
3.12 Defrosting water drainage .................................... p. 24
3.13 Safety valve drain .............................................. p. 24
3.14 Fan air ducting ................................................... p. 25
4 Electrical installer .................................................. p. 25
4.1 Warnings .......................................................... p. 25
4.2 Electrical systems ............................................... p. 25
4.3 Electrical power supply ........................................ p. 26
4.4 Set-up and control .............................................. p. 27
4.5 Water circulation pump ........................................ p. 28
5 First start-up .......................................................... p. 30
5.1 Preliminary checks .............................................. p. 31
5.2 Electronic adjustment on the machine – Menus and parameters of the S61 board ........................................ p. 31
5.3 Modifying settings .............................................. p. 32
6 Normal operation .................................................... p. 32
6.1 Warnings .......................................................... p. 32
6.2 Switch on and off ............................................... p. 32
6.3 Modifying settings .............................................. p. 33
6.4 Efficiency .......................................................... p. 33
7 Maintenance ........................................................... p. 33
7.1 Warnings .......................................................... p. 33
7.2 Pre-emptive maintenance ...................................... p. 33
7.3 Scheduled routine maintenance .............................. p. 34
7.4 Messages on the display ....................................... p. 34
7.5 Restarting a locked-down unit ................................. p. 34
7.6 Periods of inactivity ............................................. p. 35
8 Diagnostics ............................................................. p. 35
8.1 Operative codes .................................................. p. 35
9 Appendices ............................................................ p. 38
9.1 Product fiche ...................................................... p. 38
I INTRODUCTION

This Manual is an integral part of the GAHP A indoor unit and must be handed to the end user together with the appliance.

I.1 RECIPIENTS

This Manual is intended for:

- **End user**, for appropriate and safe use of the appliance.
- **Qualified installer**, for correct appliance installation.
- **Planner**, for specific information on the appliance.

I.2 CONTROL DEVICE

In order to be able to work, the GAHP A indoor unit needs a control device (DDC, CCP/CCI or external requests), which must be connected by the installer.

II SYMBOLS AND DEFINITIONS

II.1 KEY TO SYMBOLS

- **DANGER**
- **WARNING**
- **NOTE**
- **PROCEDURE**
- **REFERENCE (to other document)**

II.2 TERMS AND DEFINITIONS

**GAHP Appliance/Unit** = equivalent terms, both used to designate the gas powered absorption heat pump GAHP (Gas Absorption Heat Pump).

**TAC** = Technical Assistance Centre authorised by Robur.

**External request** = generic control device (e.g. thermostat, clock or any other system) equipped with a voltage-free NO contact and used as control to start/stop the GAHP unit.

**CCI Controller** (Comfort Controller Interface) = optional Robur control device which lets you manage up to three modulating heat only GAHP units (A, WS, GS).

**CCP Controller** (Comfort Control Panel) = Robur control device which lets you manage in modulation mode up to three GAHP units and all system components (probes, diverter/mixing valves, circulating pumps), including any integration boiler.

**DDC Control** (Direct Digital Controller) = optional Robur device to control one or more Robur appliances (GAHP heat pumps, GA chillers and AY boilers) in ON/OFF mode.

**RB100/RB200 Devices** (Robur Box) = optional interface devices complementary to DDC, which may be used to broaden its functions (heating/cooling/DHW production service demands, and control of system components such as third party generators, adjustment valves, circulators, probes).

**Heat generator** = equipment (e.g. boiler, heat pump, etc.) producing heating and/or DHW.

**GUE** (Gas Utilization Efficiency) = efficiency index of gas heat pumps, equal to the ratio between the thermal energy produced and the energy of the fuel used (relative to LCV, lower calorific value).

**First start-up** = appliance commissioning operation which may only and exclusively be carried out by a TAC.

**S61/Mod10/W10 Boards** = electronic boards on the GAHP unit, to control all functions and to provide interface with other devices and with the user.

III WARNINGS

III.1 GENERAL AND SAFETY WARNINGS

**Installer’s qualifications**

Installation must exclusively be performed by a qualified firm and by qualified personnel, with specific knowledge on heating, cooling, electrical systems and gas appliances, in compliance with the laws in force in the Country of installation.

**Declaration of conformity**

Upon completing installation, the installing firm shall issue to the owner/client the appliance’s workmanlike conformity declaration, according to national/local regulations in force and the manufacturer’s instructions/provisions.

**Misuse**

The appliance must only be used for the purposes for which it has been designed. Any other use is deemed hazardous. Incorrect use may affect operation, duration and safety of the appliance. Adhere to the manufacturer’s instructions.

**Hazardous situations**

- Do not start the appliance in hazardous conditions, such as: gas smell, problems with the plumbing/electrical/gas system, parts of the appliance under water or damaged, malfunctioning, disabling or bypassing control and safety devices.
- In case of danger, request intervention by qualified personnel.
- In case of danger, switch off the electrical power and gas supplies only if this can be done in total safety.
Do not entrust children, persons with physical, sensory or mental disabilities or persons with poor knowledge and experience with use of the appliance.

Gas component tightness
- Before performing any operation on gas ducting components, close the gas valve.
- Upon completing any procedure, perform the tightness test according to regulations in force.

Gas smell
- If you smell gas:
  - Do not use electrical devices such as telephones, multimeters or other equipment that may cause sparks next to the appliance.
  - Shut off the gas supply by turning the valve off.
  - Disconnect electrical power supply by means of the external isolation switch in the power supply electrical panel.
  - Use a telephone away from the appliance to ask for intervention from qualified personnel.

Poisoning
- Ensure the flue gas ducts are tightness and compliant with the regulations in force.
- Upon completing any procedure, ensure components are tightness.

Moving parts
- The appliance contains moving parts.
- Do not remove guards during operation, and in any case prior to disconnecting the power supply.

Burn hazard
- The appliance contains very hot parts.
- Do not open the appliance and do not touch internal components before the appliance has cooled down.
- Do not touch the flue gas exhaust before it has cooled down.

Pressure vessels
- The appliance has a sealed circuit classified as pressure vessel, the tightness of which is tested by the manufacturer.
- Do not carry out any intervention on the sealed circuit or on the appliance's valves.

Water-ammonia solution
- The GAHP/GA unit uses the ammonia-water absorption cycle. The water-ammonia solution is contained in the sealed circuit. The solution is harmful for health if it is ingested, inhaled or comes in contact with the skin.
- In the event of coolant leak keep away and disconnect the power and gas supply (only if it is possible to do so with no danger).
- Ask for TAC intervention.

Electrocution hazard
- Disconnect the electrical power supply before any operation on appliance components.
- For electrical connections exclusively use compliant components and according to the specifications provided by the manufacturer.
- Ensure the appliance cannot be accidentally switched back on.

Earthing
- Electrical safety depends on effective earthing system, correctly connected to the appliance and installed according to the regulations in force.

Distance from combustible or flammable materials
- Do not deposit flammable materials (paper, diluents, paints, etc.) near the appliance.

Limescale and corrosion
- Depending on the chemical/physical properties of the system water, limescale or corrosion may damage the appliance (Paragraph 3.7 p. 20).
- Check system sealing.
- Avoid frequent top-ups.

Chloride concentration
- The concentration of chlorides or free chlorine in the system water must not exceed the values in Table 3.2 p. 20.

Aggressive substances in air
- Halogenated hydrocarbons containing chlorine and fluorine compounds cause corrosion. The air of the installation site must be free from aggressive substances.

Acid flue gas condensate
- Discharge the acid condensate of combustion flue gas, as indicated in Paragraph 3.11 p. 23, in compliance with current exhaust regulations.

Switching the appliance off
- Disconnecting the power supply while the appliance is running may cause permanent damage to internal components.
- Except in the case of danger, do not disconnect the power supply to switch off the appliance, but always and exclusively act through the provided control device (DDC, CCP/CCI or external request).

In the event of failure
- Operations on internal components and repairs may exclusively be carried out by a TAC, using only original parts.
- In the event of failure of the appliance and/or breakage of any component, do not attempt to repair and/or restore and immediately contact the TAC.

Routine maintenance
- Proper maintenance assures the efficiency and good operation of the appliance over time.
- Maintenance must be performed according to the
Warnings

manufacturer’s instructions (see Chapter 7 p. 33) and in compliance with current regulations.

- Appliance maintenance and repairs may only be entrusted to firms legally authorised to work on gas appliances and systems.
- Enter into a maintenance contract with an authorised specialised firm for routine maintenance and for servicing in case of need.
- Use only original parts.

Decommissioning and disposal

If the appliance is to be disposed of, contact the manufacturer for its disposal.

Keep the Manual

This Installation, use and maintenance manual must always accompany the appliance and must be handed to the new owner or installer in the event of sale or removal.

III.2 CONFORMITY

EU Directives and standards
The absorption heat pumps of the GAHP series are certified as conforming to standard EN 12309 and comply with the essential requirements of the following Directives:

- 2016/426/EU “Gas Appliances Regulation” as amended and added.

Furthermore, they comply with the requirements of the following standards:

- EN 677 Specific requirements for condensing boilers with nominal heat input up to 70 kW.
- EN 378 Refrigerating systems and heat pumps.

Other applicable provisions and standards
The design, installation, operation and maintenance of the systems shall be carried out in compliance with current applicable regulations, depending on the Country and location, and in accordance with the manufacturer’s instructions. In particular, regulations regarding the following shall be complied with:

- Gas systems and equipment.
- Electrical systems and equipment.
- Heating and air conditioning systems, and heat pumps.
- Environmental protection and combustion products exhaustion.
- Fire safety and prevention.
- Any other applicable law, standard and regulation.

III.3 EXCLUSIONS OF LIABILITY AND WARRANTY

In particular, the warranty on the appliance may be rendered void by the following conditions:

- Incorrect installation.
- Misuse.
- Failure to comply with the manufacturer’s indications on installation, use and maintenance.
- Alteration or modification of the product or any part thereof.
- Extreme operational conditions or however outside of the operational ranges set forth by the manufacturer.
- Damages caused by external agents such as salts, chlorine, sulphur or other chemical substances contained in the installation water or present in the air of the installation site.
- Abnormal actions transmitted by the plant or installation to the appliance (mechanical stresses, pressure, vibrations, thermal dilations, power surges...).
- Accidental damages or due to force majeure.

Any contractual or extra-contractual liability of the manufacturer for any damage caused by incorrect installation and/or improper use and/or failure to comply with regulations and with the manufacturer's directions/instructions shall be disclaimed.
1 FEATURES AND TECHNICAL DATA

1.1 FEATURES

Operation
Based on the thermodynamic water-ammonia absorption cycle (H₂O–NH₃), the appliance produces hot water using outdoor air as a renewable energy source (cold source) and natural gas (or LPG) as primary energy.

The thermodynamic cycle takes place within a hermetically sealed circuit, in welded construction, perfectly tight, factory-tested, which does not require any maintenance or coolant top-ups.

Mechanical and thermo-hydraulic components
► Steel sealed circuit, externally treated with epoxy paint.
► Sealed combustion chamber (type C).
► Metal mesh radiant burner, equipped with ignition electrodes and flame detection, managed by an electronic flame control box.
► Titanium stainless steel shell-and-tube water heat exchanger, externally insulated.
► Stainless steel, shell-and-tube recovery exchanger of flue gas latent heat.
► Air exchanger with finned coil, with steel pipe and aluminium fins.
► Automatic microprocessor-controlled finned coil defrosting valve.
► Low-noise fan (reduction of electrical consumption and reduction of sound emission).

Control and safety devices
► S61 electronic board with microprocessor, LCD display and knob.
► Mod10 additional electronic board (integrated in S61).
► Auxiliary W10 electronic board.
► Water flowmeter.
► Generator limit thermostat, with manual reset.
► Flue gas thermostat, with manual reset.
► Generator fins temperature probe.
► Sealed circuit safety relief valve.
► Bypass valve, between high and low-pressure circuits.
► Ionization flame control box.
► Double shutter electric gas valve.
► Antifreeze functions for hydraulic circuit.
► Condensate discharge sensor.

Field of application
The GAHP A indoor unit is optimized for high temperature heating installations, with hot water up to +65°C (+70°C for DHW).

1.2 DIMENSIONS

Figure 1.1 Service plate - Hydraulic/gas unions detail

G  Gas connection Ø 3/4” F
B  Water inlet connection Ø 1 1/4” F
A  Water outlet connection Ø 1 1/4” F
Figure 1.2 GAHP indoor dimensions
1.3 COMPONENTS

Figure 1.3 Internal components - front view

1 Fan  
2 Gas valve  
3 Combustion air intake  
4 Combustion blower  
5 Ignition transformer  
6 Tmix air-gas mixture temperature probe  
7 Oil pump  
8 Water inlet connection Ø 1 1/4" F  
9 Water outlet connection Ø 1 1/4" F  
10 Gas connection Ø 3/4" F  
11 TA outdoor temperature probe  
12 Air pressure intake
**Features and technical data**

**Figure 1.4** Internal components - left side view

1. Manual reset of the flue exhaust thermostat
2. Safety valve drain
3. Condensate drain siphon
4. Sensing element of the flue exhaust thermostat
5. DN80 flue exhaust connection
6. Generator fin temperature sensor
7. Flame sensor / ignition electrodes
8. Condensate level sensor
Figure 1.5 Internal components - right side view

1 TG generator temperature probe
2 Safety valve
3 Delivery pipe flowmeter
4 Flow temperature probe
5 Limit thermostat
6 Defrosting valve
7 Return temperature probe
8 Teva evaporator temperature probe
Figure 1.6 Wiring diagram of the appliance with low consumption fan (S1)

**Features and technical data**

1.4 ELECTRICAL WIRING DIAGRAM

SCH1  Controller S61
SCH2  W10 circuit board
SCH3  Mod10 circuit board
CNTBOX  Appliance power terminal block
IGNTR  Flame controller
GVM  Gas valve on indicator lamp
GV  Gas solenoid valve
TC  Manual flue gas thermostat
TL  Generator limit thermostat
FM  Flowmeter
CWS  Condensate water sensor
VD  Defrosting valve
FAN  Fan
CF  Filter capacitor

THRC  Hot water return temperature probe
THMC  Hot water flow temperature probe
TMIX  Combustion air temperature sensor
TA  Ambient air temperature sensor
TG  Generator temperature sensor
TF  Fumes temperature sensor or generator fin sensor
TEVA  Evaporator outlet temperature sensor
MA  Terminal block
REED  Oil pump rotation sensor
1.5 ELECTRONIC BOARDS

Electronic boards (S61+Mod10)
The unit’s electrical board contains:

- **Electronic Board S61** (Figure 1.7 p. 13), with microprocessor, it controls the appliance and displays data, messages and operative codes. The appliance is monitored and programmed by interacting with the display and knob.

- **Auxiliary Mod10 electronic board** (Figure 1.8 p. 14), overlapping S61, it handles power modulation of the burner, fan and water circulation pump.

- **Satellite W10 electronic board** (Figure 1.9 p. 14), interconnected to the S61 board and located next to it, used to control defrosting operations of the GAHP unit.

**Figure 1.7 Electronic board S61**

---

<table>
<thead>
<tr>
<th>SCH1</th>
<th>Controller S61</th>
<th>IGN BOX (L, N)</th>
<th>Flame controller power supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCH3</td>
<td>Mod10 electronic board (see specific figure for further details)</td>
<td>J1 CAN bus jumper</td>
<td>P8 (GND, L, H) CAN bus connector</td>
</tr>
<tr>
<td>A1, A2</td>
<td>Auxiliary inputs</td>
<td>J10 Jumper N.O. contact</td>
<td>PUMP 230V (L, N) Oil pump supply output</td>
</tr>
<tr>
<td>ENC</td>
<td>Knob</td>
<td>J82 W10 board connector (on Mod10)</td>
<td>SPI Communication port with Mod10 controller</td>
</tr>
<tr>
<td>F1</td>
<td>T 2A fuse</td>
<td>JP10 6-pole flame controller connector</td>
<td>SRT1 Oil pump rotation sensor input</td>
</tr>
<tr>
<td>F2</td>
<td>T 10A fuse</td>
<td>JP12 Flue gas probe or generator fin probe input</td>
<td>SRT2 Hot water flowmeter input</td>
</tr>
<tr>
<td>F3</td>
<td>T 2A fuse</td>
<td>JPAG S61 board programming connector</td>
<td>TA Ambient air temperature probe input</td>
</tr>
<tr>
<td>F4</td>
<td>T 3.15A fuse</td>
<td>NAIN 230V (L, N) S61 board supply input 230 Vac</td>
<td>TA1 Evaporator output probe input</td>
</tr>
<tr>
<td>FAN</td>
<td>(BK, WH, BR) Fan output</td>
<td>N.O. CONTACT Normally open pump contact</td>
<td>TA2 Not used</td>
</tr>
<tr>
<td>FSS</td>
<td>(24V AC) board supply 24-0-24 Vac</td>
<td>P7 (R, W, Y) O) Enable input</td>
<td>TCN Combustion air temperature probe input</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPI  Communication port with Mod10 controller</td>
<td>TF Flue gas thermostat input</td>
</tr>
</tbody>
</table>
Features and technical data

Figure 1.8  **Mod10 controller**

- **HFLOW**: Not used
- **CFLOW**: Condensation water sensor control
- **JS1**: S61 connector
- **HPMP**: Primary circuit hot water pump control output (0-10 V)
- **CPMP**: S1 low consumption fan control output (0-10 V)
- **NC1-C1**: Status indication of locking warning/error
- **CN5**: Blower control
- **J82**: W10 auxiliary controller connector
- **J83**: W10 cable shielding connection
- **CN1**: Inputs 0-10V (not used)

Figure 1.9  **W10 electronic controller**

- **FS1**: Defrosting valve contact
- **JP1**: Communication with S61/Mod10
1.6 OPERATION MODE

ON/OFF or modulating operation
The GAHP unit may work in two modes:
- Mode (1) **ON/OFF**, i.e. On (at full power) or Off, with circulating pump at constant or variable flow.
- Mode (2) **MODULATING**, i.e. at variable load from 50% to 100% of heating capacity, with circulating pump at variable flow.

For each mode, (1) or (2), specific control systems and devices are provided (Paragraph 1.7 p. 15).

1.7 CONTROLS

Control device
The appliance may only work if it is connected to a control device, selected from:
- (1) **DDC control**
- (2) **CCP/CCI control**
- (3) **external request**

1.7.1 Control system (1) with DDC (GAHP unit ON/OFF)
The DDC controller is able to control appliances, a single GAHP unit, or even several Robur GAHP/GA/AY units in cascade, only in ON/OFF mode (non modulating). For more details refer to the DDC, RB100, RB200 Manuals and the Design Manual.

**DDC Controller**
The main functions are:
- Setup and control of one (or more) Robur units of the absorption line (GAHP, GA, AY).
- Data display and parameters setting.
- Hourly programming.
- Climate curve control.
- Diagnostics.
- Errors reset.
- Possibility to interface with a BMS.

DDC functionality may be extended with auxiliary Robur devices RB100 and RB200 (e.g. service requests, DHW production, Third Party generator control, probe control, system valves or circulating pumps, ...).

1.7.2 Control system (2) with CCP/CCI (modulating GAHP unit)
The CCP/CCI control is able to control up to 3 GAHP units in modulating mode (therefore A/WS/GS only, excluding AR/ACF/AY), plus any integration ON/OFF boiler. For additional details and diagrams refer to the CCP/CCI Manual and the Design Manual.

**CCP/CCI Control**

1.7.3 Adjustment system (3) with external request (GAHP unit ON/OFF)
The appliance may also be controlled via generic request devices (e.g. thermostat, timer, button, contactor...) fitted with voltage-free NO contact. This system only provides elementary control (on/off, with fixed set-point temperature), hence without the important functions of systems (1) and (2). It is advisable to possibly limit its use to simple applications only and with a single appliance.

For connection of the selected device to the appliance's electronic board please refer to Paragraph 4.4 p. 27.

1.8 TECHNICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Table 1.1 GAHP-A Indoor technical data</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Heating mode</strong></td>
</tr>
<tr>
<td><strong>Seasonal space heating energy efficiency class (ErP)</strong></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td><strong>Heat output</strong></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td><strong>GUE efficiency</strong></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td><strong>Heat input</strong></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td><strong>Hot water delivery temperature</strong></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

(1) Relative to NCV (net calorific value).
(2) In transient operation, lower temperatures are allowed.
(3) For flows other than nominal see Design Manual, Pressure losses Paragraph.
(4) As an option, a version for operation down to -30 °C is available.
(5) Value stated with free drain. ±10% according to the power supply voltage and tolerance on electrical motors consumption.
(6) ±10% depending on power voltage and absorption tolerance of electric motors.
(7) PCI (G20) 34.02 MJ/m³ (15 °C - 1013 mbar).
(8) PCI (G25) 29.25 MJ/m³ (15 °C - 1013 mbar).
(9) PCI (G27) 27.89 MJ/m³ (15 °C - 1013 mbar).
(10) PCI (G30/G31) 46.34 MJ/kg (15 °C - 1013 mbar).
(11) Sound power values detected in compliance with the intensity measurement methodology set forth by standard EN ISO 9614. Data referred to 50 °C delivery temperature.
(12) Maximum sound pressure levels in free field, with directness factor 2, obtained from the sound power level in compliance with standard EN ISO 9614. Data referred to 50 °C delivery temperature.
(13) Value stated with free drain.
### Features and technical data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Hot water return temperature</strong></td>
<td></td>
</tr>
<tr>
<td>Maximum for heating</td>
<td>°C 55</td>
</tr>
<tr>
<td>Maximum for DHW</td>
<td>°C 60</td>
</tr>
<tr>
<td>Minimum temperature in continuous operation</td>
<td>°C 30 (2)</td>
</tr>
<tr>
<td><strong>Thermal differential</strong></td>
<td></td>
</tr>
<tr>
<td>Nominal</td>
<td>°C 10</td>
</tr>
<tr>
<td><strong>Heating water flow</strong></td>
<td></td>
</tr>
<tr>
<td>Nominal</td>
<td>l/h 2500</td>
</tr>
<tr>
<td>Maximum</td>
<td>l/h 4000</td>
</tr>
<tr>
<td>Minimum</td>
<td>l/h 1400</td>
</tr>
<tr>
<td><strong>Pressure drop heating mode</strong></td>
<td></td>
</tr>
<tr>
<td>Nominal water pressure (A7W50)</td>
<td>bar 0,31 (3)</td>
</tr>
<tr>
<td><strong>Ambient air temperature (dry bulb)</strong></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>°C 45</td>
</tr>
<tr>
<td>Minimum</td>
<td>°C -15 (4)</td>
</tr>
<tr>
<td><strong>Electrical specifications</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Power supply</strong></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>V 230</td>
</tr>
<tr>
<td>Type</td>
<td>SINGLE PHASE</td>
</tr>
<tr>
<td>Frequency</td>
<td>Hz 50</td>
</tr>
<tr>
<td><strong>Electrical power absorption</strong></td>
<td></td>
</tr>
<tr>
<td>Nominal</td>
<td>kW 0,87 (5)</td>
</tr>
<tr>
<td>Minimum</td>
<td>kW 0,50 (6)</td>
</tr>
<tr>
<td><strong>Degree of protection</strong></td>
<td></td>
</tr>
<tr>
<td>IP</td>
<td>X5D</td>
</tr>
<tr>
<td><strong>Installation data</strong></td>
<td></td>
</tr>
<tr>
<td>G20 natural gas (nominal)</td>
<td>m³/h 2,72 (7)</td>
</tr>
<tr>
<td>G20 natural gas (min)</td>
<td>m³/h 1,34</td>
</tr>
<tr>
<td>G25 (nominal)</td>
<td>m³/h 3,16 (8)</td>
</tr>
<tr>
<td>G25 (min)</td>
<td>m³/h 1,57</td>
</tr>
<tr>
<td>G27 (nominal)</td>
<td>m³/h 3,32 (9)</td>
</tr>
<tr>
<td>G27 (min)</td>
<td>m³/h 1,62</td>
</tr>
<tr>
<td>G30 (nominal)</td>
<td>kg/h 2,03 (10)</td>
</tr>
<tr>
<td>G30 (min)</td>
<td>kg/h 0,99</td>
</tr>
<tr>
<td>G31 (nominal)</td>
<td>kg/h 2,00 (10)</td>
</tr>
<tr>
<td>G31 (min)</td>
<td>kg/h 0,98</td>
</tr>
<tr>
<td><strong>NO(_x) emission</strong></td>
<td></td>
</tr>
<tr>
<td><strong>NO(_x) emission</strong></td>
<td>ppm 25,0</td>
</tr>
<tr>
<td><strong>CO emission</strong></td>
<td></td>
</tr>
<tr>
<td>CO emission</td>
<td>ppm 36,0</td>
</tr>
<tr>
<td><strong>sound power (L_p) (max)</strong></td>
<td>dB(A) 74,0 (11)</td>
</tr>
<tr>
<td><strong>sound power (L_p) (min)</strong></td>
<td>dB(A) 71,0 (11)</td>
</tr>
<tr>
<td><strong>sound pressure (L_p) at 5 metres (max)</strong></td>
<td>dB(A) 52,0 (12)</td>
</tr>
<tr>
<td><strong>sound pressure (L_p) at 5 metres (min)</strong></td>
<td>dB(A) 49,0 (12)</td>
</tr>
<tr>
<td><strong>minimum storage temperature</strong></td>
<td>°C -30</td>
</tr>
<tr>
<td><strong>maximum pressure in operation</strong></td>
<td>bar 4</td>
</tr>
<tr>
<td><strong>maximum defrosting water flow</strong></td>
<td>l/h 40</td>
</tr>
<tr>
<td><strong>maximum flow flue condensate</strong></td>
<td>l/h 4,0</td>
</tr>
<tr>
<td><strong>Water content inside the apparatus</strong></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>4</td>
</tr>
<tr>
<td><strong>Water fitting</strong></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>F</td>
</tr>
<tr>
<td>Thread</td>
<td>* 1 1/4</td>
</tr>
<tr>
<td><strong>Gas connection</strong></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>F</td>
</tr>
<tr>
<td>Thread</td>
<td>* 3/4</td>
</tr>
<tr>
<td><strong>safety valve outlet channel fitting</strong></td>
<td></td>
</tr>
<tr>
<td>Diameter (Ø)</td>
<td>mm 80</td>
</tr>
<tr>
<td><strong>Flue gas exhaust</strong></td>
<td></td>
</tr>
<tr>
<td>Diameter (Ø)</td>
<td>mm 80</td>
</tr>
<tr>
<td>Residual head</td>
<td>Pa 80</td>
</tr>
<tr>
<td><strong>Weight</strong></td>
<td></td>
</tr>
<tr>
<td>In operation</td>
<td>kg 405</td>
</tr>
<tr>
<td><strong>Dimensions</strong></td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>mm 917</td>
</tr>
<tr>
<td>Depth</td>
<td>mm 1292</td>
</tr>
<tr>
<td>Height</td>
<td>mm 1580</td>
</tr>
<tr>
<td><strong>Weight</strong></td>
<td></td>
</tr>
<tr>
<td>In operation</td>
<td>kg 405</td>
</tr>
<tr>
<td><strong>required air flow</strong></td>
<td></td>
</tr>
<tr>
<td>M³/h</td>
<td>11000</td>
</tr>
<tr>
<td><strong>required air flow at the maximum available head</strong></td>
<td>M³/h 10000</td>
</tr>
<tr>
<td>Fan residual head</td>
<td>Pa 40 (13)</td>
</tr>
</tbody>
</table>

(1) Relative to NCV (net calorific value).
(2) In transient operation, lower temperatures are allowed.
(3) For flows other than nominal see Design Manual, Pressure losses Paragraph.
(4) As an option, a version for operation down to -30 °C is available.
(5) Value stated with free drain. ±10% depending on power supply voltage and tolerance on electrical motors consumption.
(6) ±10% depending on power, voltage, and absorption tolerance of electric motors.
(7) PCI (G20) 34,02 MJ/m³ (15 °C - 1013 mbar).
(8) PCI (G25) 29,25 MJ/m³ (15 °C - 1013 mbar).
(9) PCI (G27) 27,89 MJ/m³ (15 °C - 1013 mbar).
(10) PCI (G30/G31) 46,34 MJ/kg (15 °C - 1013 mbar).
(11) Sound power values in free field, with directionality factor 2, obtained from the sound power level in compliance with standard EN ISO 9614. Data referred to 50 °C delivery temperature.
(12) Maximum sound pressure levels in free field, with directionality factor 2, obtained from the sound power level in compliance with standard EN ISO 9614. Data referred to 50 °C delivery temperature.
(13) Value stated with free drain.
Transport and positioning

2. TRANSPORT AND POSITIONING

2.1 WARNINGS

Damage from transport or installation

The manufacturer shall not be liable for any damage during appliance transport and installation.

On-site inspection

- Upon arrival at the site, ensure there is no transport damage on packing, metal panels or finned coil.
- After removing the packing materials, ensure the appliance is intact and complete.

Packing

- Only remove the packing after placing the appliance on site.
- Do not leave parts of the packing within the reach of children (plastic, polystyrene, nails...) since they are potentially dangerous.

Weight

- The crane and lifting equipment must be suitable for the load.
- Do not stand under suspended loads.

2.2 HANDLING

Handling and lifting

- Always handle the appliance in its packing, as delivered by the factory.
- To lift the appliance use straps or slings inserted in the holes of the base (Figure 2.1, p. 17).
- Use lifting beams to avoid damaging the outer panels and finned coil (Figure 2.1, p. 17).
- Comply with safety regulations at the installation site.

Table 1.2 PED data

<table>
<thead>
<tr>
<th>Components under pression</th>
<th>GAHP A indoor</th>
</tr>
</thead>
<tbody>
<tr>
<td>generator</td>
<td>18.6</td>
</tr>
<tr>
<td>leveling chamber</td>
<td>11.5</td>
</tr>
<tr>
<td>evaporator</td>
<td>3.7</td>
</tr>
<tr>
<td>cooling volume transformer</td>
<td>4.5</td>
</tr>
<tr>
<td>cooling absorber solution</td>
<td>6.3</td>
</tr>
<tr>
<td>solution pump</td>
<td>3.3</td>
</tr>
<tr>
<td>test pressure (in air)</td>
<td>55</td>
</tr>
<tr>
<td>maximum pressure of the cooling circuit</td>
<td>32</td>
</tr>
</tbody>
</table>

Filling ratio kg of NH₃/l 0.146

Fluid group GROUP 1°

![Instruction for lifting](image)
In the event of handling with forklift or pallet truck, comply with the handling instructions shown on the packing.

2.3 INSTALLATION PREMISES

The installation premises must meet all requirements set forth by laws, standards and regulations of the Country and place of installation concerning gas appliances and cooling appliances.

Do not install inside a room that has no aeration openings.

GAHP A indoor unit ventilation

The aerothermal appliance requires aerated premises for regular air flow into the finned coil. The air exhaust above the fan mouth must be ducted outside in order to prevent air recirculation towards the aeration openings. Incorrect ventilation may affect efficiency and cause damage to the appliance. The manufacturer shall not be liable for any incorrect choices of the installation premises and setting.

Other appliances

Any other gas appliances in the room must necessarily be type C.

Features of the installation premises

► The room must have permanent aeration vents whose surface must be sufficient for regular air flow to the finned coil (11000 m³/h).
► The appliance’s flue gas exhaust must be ducted to the outside. The appliance’s flue must not be immediately close to openings or air intakes of buildings, and must comply with environmental regulations.
► The combustion air intake must be ducted from the outside.

Defrosting water drainage

In winter, it is normal for frost to form on the finned coil and for the appliance to perform defrosting cycles.

► To prevent overflowing and damage provide for a defrosting water drainage system.

Acoustic issues

► Pre-emptively assess the appliance’s sound impact inside the room and to the next rooms and the outside.

2.4 MINIMUM CLEARANCE DISTANCES

Distances from combustible or flammable materials

► Keep the appliance away from combustible or flammable materials or components, in compliance with applicable regulations.

Clearances around the appliance

The minimum clearance distances shown in Figure 2.2 p. 18 (bar any stricter regulations) are required for safety, operation and maintenance.

Figure 2.2 Clearances

2.5 MOUNTING BASE

Flooring of the utilities room

► Place the appliance on a levelled flat surface made of fireproof material and able to withstand its weight.

Anti vibration mountings

Although the appliance’s vibrations are minimal, resonance phenomena might occur.

► Use anti-vibration mountings.
► Also provide anti-vibration joints between the appliance and water and gas pipes.

3 HEATING ENGINEER

3.1 WARNINGS

General warnings

► Read the warnings in Chapter III.1 p. 4, providing important information on regulations and on safety.
3.2 HYDRAULIC SYSTEM

Primary and secondary circuit
▶ In many cases it is advisable to divide the hydraulic system into two parts, primary and secondary circuit, uncoupled by a hydraulic separator, or possibly by a tank that also acts as inertial tank/ buffer.

Constant or variable water flow
The GAHP unit may work with constant or variable water flow, regardless of the ON/OFF or modulating operative mode. System and components must be designed and installed consistently.

Minimum water content
High thermal inertia is conducive to efficient appliance operation. Very short ON/OFF cycles are to be avoided.
▶ If necessary, provide for an inertial volume, to be suitably sized (see design manual).

3.3 HYDRAULIC CONNECTIONS

Plumbing fittings
on the right, at the bottom, connection plate (Figure 1.1 p. 7).

Figure 3.1 Hydraulic plan

1  Anti-vibration connection  2  Pressure gauge  3  Flow regulator valve  4  Water filter  5  Shut-off valves  6  Water pump (primary circuit)  7  Safety valve (3 bar)  8  Expansion tank  9  Hydraulic separator / inertial tank with 4 fittings  10  Water pump (secondary circuit)

3.4 WATER CIRCULATION PUMP

The circulation pump (flow and head) must be selected and installed based on pressure losses of plumbing/primary circuit (piping + components + exchange terminals + appliance). For the appliance's pressure losses refer to Table 1.1 p. 15 and Design Manual.

(1) CONSTANT FLOW circulating pump
The primary circulating pump must be obligatorily controlled by the appliance's electronic board (S61) (see Paragraph 1.5 p. 13).

(2) VARIABLE FLOW circulating pump
For variable flow operation, use of a Wilo Stratos Para pump is obligatory, supplied as accessory on demand, to be connected to the Mod10 electronic board (see Paragraph 1.5 p. 13). Any other type of pump will give constant flow. Refer to the Design Manual for the features of the Wilo Stratos Para pump.
### 3.5 ANTIFREEZE FUNCTION

**Active antifreeze self-protection**

The appliance is equipped with an active antifreeze self-protection system to prevent icing. The anti-icing function (activated by default) automatically starts the primary circulation pump and, if required, the burner too, when the outside temperature approaches zero.

**Electrical and gas continuity**

The active antifreeze self-protection is only effective if the power and gas supplies are assured. Otherwise, antifreeze liquid might be required.

### 3.6 ANTIFREEZE LIQUID

**Precautions with glycol**

The manufacturer disclaims any liability for any damage caused by improper glycol use.

- Always check product suitability and its expiry date with the glycol supplier. Periodically check the product’s preservation state.

**Type of antifreeze glycol**

- **Inhibited type glycol** is recommended to prevent oxidation phenomena.

**Glycol effects**

The Table 3.1 p. 20 shows, indicatively, the effects of using a glycol depending on its %.

**Table 3.1 Technical data for filling the hydraulic circuit**

<table>
<thead>
<tr>
<th>GLYCOL %</th>
<th>WATER-GLYCOL MIXTURE FREEZING TEMPERATURE</th>
<th>PERCENTAGE OF INCREASE IN PRESSURE DROPS</th>
<th>LOSS OF EFFICIENCY OF UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>-3 °C</td>
<td>6,0%</td>
<td>0,5%</td>
</tr>
<tr>
<td>15</td>
<td>-5 °C</td>
<td>8,0%</td>
<td>1,0%</td>
</tr>
<tr>
<td>20</td>
<td>-8 °C</td>
<td>10,0%</td>
<td>2,0%</td>
</tr>
<tr>
<td>25</td>
<td>-12 °C</td>
<td>12,0%</td>
<td>2,5%</td>
</tr>
<tr>
<td>30</td>
<td>-15 °C</td>
<td>14,0%</td>
<td>3,0%</td>
</tr>
<tr>
<td>35</td>
<td>-20 °C</td>
<td>16,0%</td>
<td>4,0%</td>
</tr>
<tr>
<td>40</td>
<td>-25 °C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 3.7 SYSTEM WATER QUALITY

**Responsibility of the user/operator/installer**

The installer, operator and user must assure system water quality (Table 3.2 p. 20). Failure to comply with the manufacturer’s guidelines may affect operation, integrity and life of the appliance, voiding the warranty.

**System water characteristics**

Free chlorine or water hardness may damage the appliance. Adhere to the chemical-physical parameters in Table 3.2 p. 20 and the regulations on water treatment for residential and industrial heating systems.

**Table 3.2 Chemical and physical parameters of water**

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>UNIT OF MEASUREMENT</th>
<th>ALLOWABLE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>/</td>
<td>&gt; 7 (1)</td>
</tr>
<tr>
<td>Chlorides</td>
<td>mg/l</td>
<td>&lt; 125 (2)</td>
</tr>
<tr>
<td>Total hardness (CaCO₃)</td>
<td>°d</td>
<td>&lt; 15</td>
</tr>
<tr>
<td>Iron</td>
<td>mg/kg</td>
<td>&lt; 0,5 (3)</td>
</tr>
<tr>
<td>Copper</td>
<td>mg/kg</td>
<td>&lt; 0,1 (3)</td>
</tr>
<tr>
<td>Aluminium</td>
<td>mg/l</td>
<td>&lt; 1</td>
</tr>
<tr>
<td>Langelier’s index</td>
<td>/</td>
<td>0-0,4</td>
</tr>
</tbody>
</table>

**HARMFUL SUBSTANCES**

- Free chlorine: mg/l, < 0,2 (3)
- Fluorides: mg/l, < 1
- Sulphides: ABSENT

1. with aluminium or light alloys radiators, pH must also be lower than 8 (in compliance with applicable rules)
2. value referred to the maximum water temperature of 80 °C
3. in compliance with applicable rules

**Water topping up**

The chemical-physical properties of the system’s water may alter over time, resulting in poor operation or excessive topping up.

- Ensure there are no leaks in the installation.
- Periodically check the chemical-physical parameters of the water, particularly in case of automatic topping up.
Chemical conditioning and washing

Water treatment/conditioning or system washing carried out carelessly may result in risks for the appliance, the system, the environment and health.

- Contact specialised firms or professionals for water treatment or system washing.
- Check compatibility of treatment or washing products with operating conditions.
- Do not use aggressive substances for stainless steel or copper.
- Do not leave washing residues.

3.8 SYSTEM FILLING

How to fill up the system

After completing all water, electrical and gas connections:

1. Pressurise (at least 1.5 bar) and vent the hydraulic circuit.
2. Let water flow (with appliance off).
3. Check and clean the filter on the inlet pipe.
4. Repeat items 1, 2 and 3 until the pressure has stabilised (at least 1.5 bar).

3.9 FUEL GAS SUPPLY

Gas connection

- 3/4" F on the right, at the bottom, connection plate (Figure 1.1 p. 7).
- Install an anti-vibration connection between the appliance and the gas piping.

Mandatory shut-off valve

- Provide a gas shut-off valve (manual) on the gas supply line, next to the appliance, to isolate it when required.
- Perform connection in compliance with applicable regulations.

Gas pipes sizing

The gas pipes must not cause excessive pressure drops and, consequently, insufficient gas pressure for the appliance.

Supply gas pressure

This appliance is equipped for a maximum gas supply pressure of 50 mbar.

The appliance’s gas supply pressure, both static and dynamic, must comply with Table 3.3 p. 21, with tolerance ± 15%.

Non compliant gas pressure (Table 3.3 p. 21) may damage the appliance and be hazardous.

### Table 3.3 Gas network pressure

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IIHIBIP</td>
<td>AL, BG, CY, CZ, DK, EE, FI, GR, HR, IT, LT, MK, NO, RO, SE, SI, SK, TR</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AT, CH</td>
<td>20</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIHBCP</td>
<td>BG, CH, CZ, ES, GB, HR, IE, IT, LT, MK, PT, SI, SK, TR</td>
<td>20</td>
<td></td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RO</td>
<td>20</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td>20</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIHH1BIP</td>
<td>DE</td>
<td>20</td>
<td>20</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIH1BFP, IIH2BFP</td>
<td>FR</td>
<td>20</td>
<td>25</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIH1BIP</td>
<td>HU</td>
<td>25</td>
<td>30</td>
<td>30</td>
<td>25 (1) (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIH2BFP</td>
<td>LU</td>
<td>20</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIH1BIP</td>
<td>NL</td>
<td>25</td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIH2BIP</td>
<td>NL</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>25 (1) (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIH2BFP</td>
<td>PL</td>
<td>20</td>
<td>37</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIH2EBP, IIH2EBP</td>
<td>PL</td>
<td>20</td>
<td>37</td>
<td>37</td>
<td>20 (2)</td>
<td>13 (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIH3BFP</td>
<td>BE</td>
<td>20</td>
<td>25</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IH</td>
<td>IS</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IH</td>
<td>LV</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IH</td>
<td>MT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>IH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

(1) GAHP-AR not approved for G25.1, G25.3 gases.
(2) GA ACF not approved for G25.1, G27, G2,350, G25.3 gases.

Vertical pipes and condensate

- Vertical gas pipes must be fitted with siphon and discharge of the condensate that may form inside the pipe.
- If necessary, insulate the piping.

LPG pressure reducers

With LPG the following must be installed:

- A first stage pressure reducer, close to the liquid gas tank.
- A second stage pressure reducer, close to the appliance.
3.10 COMBUSTION PRODUCTS EXHAUST

Compliance with standards

The appliance is approved for connection to a combustion products exhaust duct for the types shown in Table 1.1 p. 15.

Flue gas exhaust connection

► Ø 80 mm (with gasket), on the left, at the top (Figure 1.2 p. 8).

Combustion air intake fitting

► Ø 80 mm (with gasket), on the left, at the top (Figure 1.2 p. 8).

Flue gas exhaust

Some possible configurations are shown in the Figures 3.2 p. 22, 3.3 p. 23.

Figure 3.2 Type C53 split wall flue gas exhaust
Flue

- It is not allowed to connect several appliances to a single flue, but each appliance must have its own separate flue.
- To size the flue refer to Table 3.4 p. 23 and Design Manual.

The flue must be designed, sized, tested and constructed by a skilled form, with materials and components complying with the regulations in force in the country of installation.
- Always provide a socket for flue gas analysis, in an accessible position.

### Table 3.4 Fumes temperature and flow

<table>
<thead>
<tr>
<th>Gas type</th>
<th>Heat input</th>
<th>CO₂ (%)</th>
<th>TF (°C)</th>
<th>Fumes flow (kg/h)</th>
<th>Residual head (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G20</td>
<td>Nominal</td>
<td>9,10</td>
<td>65</td>
<td>42</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>8,90</td>
<td>46</td>
<td>21</td>
<td>80</td>
</tr>
<tr>
<td>G25</td>
<td>Nominal</td>
<td>9,10</td>
<td>63,6</td>
<td>42</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>8,90</td>
<td>45,7</td>
<td>21</td>
<td>80</td>
</tr>
<tr>
<td>G25.1</td>
<td>Nominal</td>
<td>10,10</td>
<td>65</td>
<td>45</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>9,60</td>
<td>46</td>
<td>23</td>
<td>80</td>
</tr>
<tr>
<td>G27</td>
<td>Nominal</td>
<td>9,0</td>
<td>64</td>
<td>42</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>8,5</td>
<td>46</td>
<td>21</td>
<td>80</td>
</tr>
<tr>
<td>G2.350</td>
<td>Nominal</td>
<td>9,00</td>
<td>62,7</td>
<td>42</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>8,70</td>
<td>46,8</td>
<td>22</td>
<td>80</td>
</tr>
<tr>
<td>G30</td>
<td>Nominal</td>
<td>10,40</td>
<td>65</td>
<td>43</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>10,10</td>
<td>46</td>
<td>22</td>
<td>80</td>
</tr>
<tr>
<td>G31</td>
<td>Nominal</td>
<td>9,10</td>
<td>65</td>
<td>48</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>8,90</td>
<td>46</td>
<td>24</td>
<td>80</td>
</tr>
</tbody>
</table>

### 3.11 FLUE GAS CONDENSATE DISCHARGE

The GAHP A indoor unit is a condensing appliance and therefore produces condensation water from combustion flue gases.

![Condensate acidity and exhaust regulations](image)

The flue gas condensate contains aggressive acid substances. Refer to applicable regulations in force for condensate exhaust and disposal.
If required, install an acidity neutraliser of adequate capacity.

**Do not use gutters to discharge the condensate**

Do not discharge the fume condensate in gutters, due to the risk of materials corrosion and ice formation.

**Flue gas condensate connection**

The fitting for flue gas condensate drain is located on the left side of the appliance (Figure 3.4 p. 24), accessible by removing the suitable door.

- The distance \( L \) between the sleeve and the base must not exceed 110 mm.
- The corrugated condensate discharge pipe must be connected to a suitable discharge manifold.
- The junction between the pipe and the manifold must remain visible.
- The connection of the discharge to the sewerage system must be made at atmospheric pressure, i.e. by dripping into a siphoned container connected to the sewerage system.

**Flue gas condensate discharge manifold**

To make the condensate discharge manifold:

- Size the ducts for maximum condensation capacity (Table 1.1 p. 15).
- Use plastic materials resistant to acidity pH 3-5.
- Provide for min. 1% slope, i.e. 1 cm for each m of the length (otherwise a booster pump is required).
- Prevent icing.
- Dilute, if possible, with domestic waste water (e.g. bathrooms, washing machines, dish washers...), basic and neutralising.

**Charging the siphon**

To prevent an initial discharge of combustion products from the condensate drain, charge the siphon itself as follows:

1. Remove the appliance's left panel to access the siphon (see Figure 1.4 p. 10 - detail 3).
2. If the fumes exhaust equipment has not yet been installed, pour 0.2 litres of water directly into the plastic fumes exhaust pipe accessible from the top panel (see Figure 1.4 p. 10 - detail 5) and visually check that the siphon is full, then go to step 5. Otherwise, proceed to the next step.
3. Remove the clamp from the inlet pipe to the siphon (above it), disconnect the plastic pipe from the siphon and fill it with 0.2 litres of water.
4. Reconnect the plastic pipe and secure it with its clamp.
5. Restore the appliance.

If the appliance is operated with the siphon empty, there is a risk of leaks of combusted gas.

**3.12 DEFROSTING WATER DRAINAGE**

**Defrosting**

In winter, frost may form on the finned coil and the appliance performs defrosting cycles.

**Collection basin and drainage system**

- Provide for a collection basin or containment rim and a discharge system of the defrosting water, to avoid overflowing, icing and damage.

**3.13 SAFETY VALVE DRAIN**

The safety valve drain must be mandatorily ducted outside. Failure to comply with this provision jeopardizes first start-up.

Do not install any shut off device on the exhaust duct between the safety valve and the outside exhaust.

**Safety valve drain ducting**

The exhaust ducting shall be made in steel pipes (do not use copper or its alloys). Table 3.5 p. 24 provides sufficient criteria of pipe sizing; alternatively, less compelling sizing is accepted, provided it is compliant with specific applicable norms (the manufacturer cannot be held liable).

**Table 3.5 Safety valve drain ducting**

<table>
<thead>
<tr>
<th>Diameter</th>
<th>DN</th>
<th>Maximum length (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/4&quot;</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>2&quot;</td>
<td>50</td>
<td>60</td>
</tr>
</tbody>
</table>
How to make the safety valve drain ducting

1. Remove the plastic cover on the appliance's left side panel.
2. Connect the drain duct, which must have an initial straight section of at least 30 cm, to the outlet.
3. Fasten the pipe to the nut on the safety valve outlet, taking care to place the Teflon seal supplied with the appliance in between.
4. Place the drain terminal outside the room, away from doors, windows and aeration vents, and at such a height that any coolant leaks cannot be inhaled by any people.

3.14 FAN AIR DUCTING

Air duct
The appliance is fitted with a flange for connecting to a fan outlet air duct.

 casualties are tolerated.
- A pressure socket is provided to measure the pressure differential (see Figure 1.3 p. 9).

4 ELECTRICAL INSTALLER

4.1 WARNINGS

General warnings
Read the warnings in Chapter III.1 p. 4, providing important information on regulations and on safety.

Compliance with installation standards
Installation must comply with applicable regulations in force, based on the installation Country and site, in matters of safety, design, implementation and maintenance of electrical systems.

Live components
- After placing the appliance in the final position, and prior to making electrical connections, ensure not to work on live components.

Earthing
- The appliance must be connected to an effective earthing system, installed in compliance with regulations in force.
- It is forbidden to use gas pipes as earthing.

Cable segregation
Keep power cables physically separate from signal ones.

Do not use the power supply switch to turn the appliance on/off
- Never use the external isolation switch (GS) to turn the appliance on and off, since it may be damaged in the long run (occasional blackouts are tolerated).
- To turn the appliance on and off, exclusively use the suitably provided control device (DDC, CCP/CCI or external request).

Control of water circulation pump
The water circulation pump of the hydraulic/primary circuit must mandatorily be controlled by the unit's electronic boards (S61 + Mod10). It is not admissible to start/stop the circulating pump with no enable from the appliance.

4.2 ELECTRICAL SYSTEMS

Electrical connections must provide:
- (a) power supply (Paragraph 4.3 p. 26)
- (b) control system (Paragraph 1.5 p. 13)
Electrical installer

4.3 ELECTRICAL POWER SUPPLY

Power supply line
Provide (by the installer) a protected single phase line (230 V 1-N 50 Hz) with:
► 1 three-pole cable type FG7(O)R 3Gx1.5
► 1 two-pole switch with two 5A type T fuses, (GS) or one 10A magnetothermic breaker

How to make connections
All electrical connections must be made in the appliance’s electrical panel (Figure 4.1 p. 26):
1. Ensure the appliance’s electrical panel is not live.
2. Remove the front panel of the appliance and the cover of the electrical panel.
3. Run the cables through the suitable holes in the connection plate.
4. Run the cables through the suitable cable glands in the electrical panel.
5. Identify the appropriate connection terminals.
6. Make the connections.
7. Close the electrical panel and fit the front panel back on.

How to connect the power supply
To connect the three-pole power supply cable (Figure 4.2 p. 26):
1. Access the electrical board of the appliance according to the Procedure 4.2 p. 25.

The switches must also provide disconnector capability, with min contact opening 4 mm.
2. Connect the three lead-in wires to the terminal block (TER) in the electrical panel on the machine.
3. Provide the earth lead-in wire longer than live ones (last to be torn in the event of accidental pulling).

4.4 SET-UP AND CONTROL

Control systems, options (1) (2) (3)
Three separate adjustment systems are provided, each with specific features, components and diagrams (see 4.4 p. 28, 4.5 p. 28):
- System (1), with DDC control (with CAN bus connection).
- System (2), with CCP/CCI control (with CAN bus connection).
- System (3), with an external request.

CAN bus communication network
The CAN bus communication network, implemented with the cable of the same name, makes it possible to connect and remotely control one or more Robur appliances with the DDC or CCP/CCI control devices. It entails a certain number of serial nodes, distinguished in:
- Intermediate nodes, in variable number.
- Terminal nodes, always and only two (beginning and end).

Each component of the Robur system, appliance (GAHP, GA, AY, ...) or control device (DDC, RB100, RB200, CCI, ...), corresponds to a node, connected to two more elements (if it is an intermediate node) or to just one other element (if it is a terminal node) through two/one CAN bus cable section/s, forming an open linear communication network (never star or loop-shaped).

CAN bus signal cable
The DDC or CCP/CCI controllers are connected to the appliance through the CAN bus signal cable, shielded, compliant to Table 4.1 p. 27 (admissible types and maximum distances). For lengths ≤200 m and max 4 nodes (e.g. 1 DDC + 3 GAHP), a simple 3x0.75 mm shielded cable may even be used.

Table 4.1 CAN bus cables type

<table>
<thead>
<tr>
<th>CABLE NAME</th>
<th>SIGNALS / COLOR</th>
<th>MAX LENGTH</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robur ROBUR NETBUS</td>
<td>H= BLACK, L= WHITE, GND= BROWN</td>
<td>450 m</td>
<td>Ordering Code OCVO008</td>
</tr>
<tr>
<td>Honeywell SDS 1620</td>
<td>H= BLACK, L= WHITE, GND= BROWN</td>
<td>450 m</td>
<td></td>
</tr>
<tr>
<td>Belden 3086A</td>
<td>H= BLACK, L= WHITE, GND= BROWN</td>
<td>450 m</td>
<td></td>
</tr>
<tr>
<td>TURCK type 530</td>
<td>H= BLACK, L= WHITE, GND= BROWN</td>
<td>450 m</td>
<td></td>
</tr>
<tr>
<td>DeviceNet Mid Cable</td>
<td>H= BLUE, L= WHITE, GND= BLACK</td>
<td>450 m</td>
<td></td>
</tr>
<tr>
<td>TURCK type 5711</td>
<td>H= BLACK, L= WHITE, GND= BROWN</td>
<td>200 m</td>
<td></td>
</tr>
<tr>
<td>Honeywell SDS 2022</td>
<td>H= BLACK, L= WHITE, GND= BROWN</td>
<td>200 m</td>
<td></td>
</tr>
</tbody>
</table>

How to connect the CAN bus cable to the appliance
To connect the CAN bus cable to the S61 electronic board (Paragraph 1.5 p. 13), located in the electrical panel inside the unit, (Figure 4.3 p. 27 and 4.4 p. 28):
1. Access the electrical panel of the appliance according to the Procedure 4.2 p. 25.
2. Connect the CAN bus cable to the GND (shielding/earthing) + L and H terminals (two signal wires).
3. Place the CLOSED J1 Jumpers (Detail A) if the node is terminal (one connected CAN bus cable section only), or OPEN (Detail B) if the node is intermediate (two connected CAN bus cable sections).
4. Connect the DDC or the CCP/CCI to the CAN bus cable according to the instructions in the following Paragraphs and the DDC or CCP/CCI Manuals.

GAHP Configuration (S61) + DDC or CCP/CCI
(Systems (1) and (2) see also Paragraph 1.7 p. 15)

![Figure 4.3 Electrical wiring diagram - Connection cable CAN bus to electronic board](image-url)
**External request**
(System (3) see also Paragraph 1.7 p. 15)
It is required to arrange:
▶ request device (e.g. thermostat, clock, button, ...) fitted with a voltage-free NO contact.

**How to connect the external request**

Connection of external request is effected on the S61 board located in the electrical panel inside the unit (Figure 4.5 p. 28):
1. Access the electrical board of the appliance according to the Procedure 4.2 p. 25.
2. Connect the voltage-free contact of the external device (Detail CS), through two wires, to terminals R and W (respectively: common 24 V AC and heating request) of S61 electronic board.

---

**4.5 WATER CIRCULATION PUMP**

**4.5.1 Option (1) CONSTANT FLOW circulating pump**
It must be mandatorily controlled from the S61 electronic board. The diagram in Figure 4.6 p. 29 is for pumps < 700 W. For
pumps > 700 W it is required to add a control relay and arrange Jumper J10 OPEN.

**How to connect the constant flow circulating pump**

1. Access the electrical board of the appliance according to the Procedure 4.2 p. 25.

2. Connect board S61, to terminals 3-4 of terminal block (MA).

3. Jumper J10 can be opened or closed as described in the note in Figure 4.6 p. 29.

**Figure 4.6** Water circulation pump connection - Connection of plant water circulation pumps (power absorption less than 700 W), controlled directly by the appliance.

4.5.2 Option (2) VARIABLE FLOW circulating pump

It must be mandatorily controlled from the Mod10 electronic board (built into the S61).

**How to connect the variable flow circulation pump**

The Wilo Stratos Para pump is already standard supplied with the power supply cable and signal cable, both 1.5m long.

For longer distances, use respectively cable FG7 3Gx1.5mm² and shielded cable 2x0.75 mm² suitable for 0-10V signal.

To connect the Wilo Stratos Para pump (Figure 4.7 p. 30 or 4.8 p. 30).

1. Connect the brown wire of the pump to terminal "-" HP-MP of the Mod10 board, and the white wire of the pump to terminal "+" HPMP of the Mod10 board.

2. Isolate the black wire and the blue one.

3. Protect the pump’s supply line with a double pole switch with 2 A delayed fuse (Detail IP, Figure 4.7 p. 30), or connect it directly to the terminals inside the appliance’s electrical board (Detail MA, Figure 4.8 p. 30).
**Figure 4.7** Wiring diagram for connection of Wilo Stratos Para variable rate pump

IP  Two-position pump power switch
E  Fuse
PM  Hot water circulation pump (primary circuit)

Pump signal 0-10V wire colours
- brown connect to -ve
- white connect to +ve
- black isolate
- blue isolate

**Figure 4.8** Wiring diagram for hooking up the Wilo Stratos Para variable rate pump powered by the unit

PM  Hot water circulation pump (primary circuit)
MA  Unit terminal block

Pump signal 0-10V wire colours
- brown connect to -ve
- white connect to +ve
- black isolate
- blue isolate

## 5 FIRST START-UP

First start-up entails checking/setting up the combustion parameters and may exclusively be carried out by a Robur TAC. **NEITHER** the user **NOR** the installation technician is authorised to perform such operations, under penalty of voiding the warranty.
5.1 PRELIMINARY CHECKS

Preliminary checks for first start-up

Upon completing installation, before contacting the TAC the installer must check:

▶ Water, electrical and gas systems suitable for the required capacities and equipped with all safety and control devices required by the regulations in force.
▶ Absence of leaks in the water and gas systems.
▶ Type of gas for which the appliance is designed (natural gas or LPG).
▶ Supply gas pressure complying with the values of Table 3.3 p. 21, with max tolerance ±15%.
▶ Correct operation of the flue exhaust duct.
▶ Power supply mains complying with the appliance’s rating plate data.
▶ Appliance correctly installed, according to the manufacturer’s instructions.
▶ System installed in a workmanlike manner, according to national and local regulations.

Abnormal or hazardous installation situations

Should any abnormal or hazardous installation situations be found, the TAC shall not perform first start-up and the appliance shall not be commissioned.

These situations may be:

▶ Appliance installed inside a room that has no sufficiently wide aeration vents.
▶ Appliance installations other than type C.
▶ Failed compliance with minimum clearances.
▶ Insufficient distance from combustible or flammable materials.
▶ Conditions that do not warrant access and maintenance in safety.
▶ Appliance switched on/off with the main switch, instead of the control device provided (DDC, CCP/CCI or external request).
▶ Appliance defects or faults caused during transport or installation.
▶ Gas smell.
▶ Non-compliant mains gas pressure.
▶ Non-compliant flue gas exhaust.
▶ No outside ducting of the safety valve drain.
▶ No ducting of the air expelled by the fan.
▶ All situations that may involve operation abnormalities or are potentially hazardous.

Non-compliant system and corrective actions

Should the TAC find any non-conformities, the user/installer is bound to perform any corrective procedures required by the TAC.

After performing the remedial actions (the installer’s responsibility), if the TAC deems that safety and conformity conditions are in place, first start-up may be effected.

5.2 ELECTRONIC ADJUSTMENT ON THE MACHINE – MENUS AND PARAMETERS OF THE S61 BOARD

The instructions on the use of the S61 electronic board concern the firmware version 3.035.

The appliance’s electronic board (S61)

Figure 5.1 GAHP unit electronic board (S61+Mod10)

Display

The 4-digit display of the S61 board (Detail A Figure 5.1 p. 31) is as follows:

▶ The first digit (on the left, green) indicates the menu number (e.g. "0", "1", "2", ... "8").
▶ The last three digits (on the right, red) indicate a code or a value for a parameter, among those included in the selected menu (e.g. "__6", "20", "161").

Knob

One of the following actions may be done with the S61 board knob (Detail B in Figure 5.1 p. 31):

▶ Enter the menu list (by pressing the first time).
▶ Scroll the menu list, or a series of parameters in a menu (by turning).
▶ Select a menu or a parameter (by pressing).
▶ Modify and confirm the setting of a parameter (turning and pressing).
▶ Execute a command (by pressing).
▶ Exit a menu and go back to the higher level by selecting the letter "E" which is displayed at the end of the menu list or of a series of parameters in a menu.

The letter "E" is displayed at the end of the menu list or of a series of parameters in a menu, and indicates the exit to go back to the higher level by pressing the knob.

Menus and Parameters

The menus may be display only (functional data or parameters), display and setting (parameters) or control (reset).

Menu for the user (but for the installer and TAC as well)

▶ The menu "0", display only, for functional data detected in real time.
▶ The menu "1", display only, for current values of appliance parameters.
▶ Menu "2", control, to execute flame control unit reset operations, reset errors (Paragraph 7.5 p. 34).
▶ Menu "3", display and setting, to set the value of some system parameters (e.g. water set point temperature); the values are initialised by the TAC at first start-up.

It is accessed without password.

Menu for the installer or TAC (not accessible to the user)
6 NORMAL OPERATION

This section is for the end user.

6.1 WARNINGS

General warnings

Prior to using the appliance carefully read the warnings in Chapter III.1 p. 4, providing important information on regulations and on safety.

First start-up by TAC

First start-up may exclusively be carried out by a Robur TAC (Chapter 5 p. 30).

Never power the appliance off while it is running

NEVER power the appliance off while it is running (except in the event of danger, Chapter III.1 p. 4), since the appliance or system might be damaged.

6.2 SWITCH ON AND OFF

Routine switching on/off

The appliance may exclusively be switched on/off by
means of the suitably provided control device (DDC, CCP/CCI or external requests).

Do not switch on/off with the power supply switch

Do not switch the appliance on/off with the power supply switch. This may be harmful and dangerous for the appliance and for the system.

Inspections before switching on

Before switching on the appliance, ensure that:
- gas valve open
- appliance electrical power supply (main switch (GS) on)
- DDC or CCP/CCI power supply (if present)
- water circuit ready

How to switch on/off

▶ If the appliance is controlled by a DDC or by a CCP/CCI (systems (1) and (2) see Paragraph 1.7 p. 15), refer to the respective manuals.
▶ If the appliance is controlled by external request (e.g. thermostat, clock, button, ... with voltage-free NO contact), (system (3) see Paragraph 1.7 p. 15), the appliance is switched on/off by the ON/OFF positions of the external control device.

After switching on with the control, in normal operating conditions, the appliance starts/stops automatically according to the user’s thermal needs, supplying hot water at the programmed temperature.

6.3 MODIFYING SETTINGS

Modify the settings through the DDC or CCP/CCI

If the appliance is connected to the DDC or to the CCP/CCI control, refer to the relevant manual to modify settings.

Do not modify complex settings

Specific technical and system knowledge is required for complex settings. Contact a TAC.

6.4 EFFICIENCY

For increased appliance efficiency:
- Keep the finned coil clean.
- Adjust the maximum water temperature to the actual system requirements.
- Reduce repeated switch-ons to the minimum (low loads).
- Program appliance activation for actual periods of use.
- Keep water and air filters on plumbing and ventilation systems clean.

7 MAINTENANCE

7.1 WARNINGS

Correct maintenance prevents problems, assures efficiency and keeps running costs low.

Maintenance operations described herein may exclusively be performed by the TAC or skilled maintenance technician.

Any operation on internal components may exclusively be performed by the TAC.

Before performing any operation, switch off the appliance by means of the control device (DDC, CCP/CCI or external request) and wait for the end of the switching off cycle, then disconnect power and gas supply, by acting on the electrical disconnector and gas valve.

7.2 PRE-EMPTIVE MAINTENANCE

For pre-emptive maintenance, comply with the recommendations in Table 7.1 p. 34.
Table 7.1

<table>
<thead>
<tr>
<th>Guidelines for the preventive maintenance operations</th>
<th>GAHP A</th>
<th>GAHP GS/WS</th>
<th>AY00-120</th>
<th>GA ACF</th>
<th>GAHP-AR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visually check of the general condition of the unit and of its finned coil</td>
<td>√ (1)</td>
<td>-</td>
<td>-</td>
<td>√ (1)</td>
<td>√ (1)</td>
</tr>
<tr>
<td>check the correct operation of the device used for monitoring the water flow</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>check the % value of CO₂</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>check-gas pressure to the burners</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>check that the condensate discharge is clean</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>replace the belts after 6 years or 12,000 hours of operation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>check/restore the pressure of the primary hydronic circuit</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>check/restore the air pressure inside of the expansion vessel of the primary hydronic circuit</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>check for every DDC or CCI</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

(1) It is suggested to clean the finned coil once every 4 years (optimal frequency of the cleaning operation is in any case strongly affected by the installation site). Avoid excessively aggressive cleaning of the finned coil (e.g. high-pressure washer).

7.3 SCHEDULED ROUTINE MAINTENANCE

For scheduled routine maintenance, perform the operations in Table 7.2 p. 34, at least once every 2 years.

Table 7.2

<table>
<thead>
<tr>
<th>Ordinary scheduled maintenance</th>
<th>GAHP A</th>
<th>GAHP GS/WS</th>
<th>AY00-120</th>
<th>GA ACF</th>
<th>GAHP-AR</th>
</tr>
</thead>
<tbody>
<tr>
<td>clean the combustion chamber</td>
<td>√ (1)</td>
<td>√ (1)</td>
<td>√</td>
<td>√</td>
<td>√ (1)</td>
</tr>
<tr>
<td>clean the burner</td>
<td>√ (1)</td>
<td>√ (1)</td>
<td>√</td>
<td>√</td>
<td>√ (1)</td>
</tr>
<tr>
<td>clean the ignition and flame sensor electrodes</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>check that the condensate discharge is clean</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>replace the silicone gasket between the front plate and the exchanger</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

(1) Only in case the analysis of combustion products is non-compliant.

7.4 MESSAGES ON THE DISPLAY

4 digit display

The S61 board of the appliance (Paragraph 1.5 p. 13, Figure 5.1 p. 31) is fitted with a 4-digit display, visible through the sight glass of the front panel.

- When the appliance is powered on, all the LEDs switch on for 3 sec, then the S61 board name is displayed.
- After another 15 sec, the appliance is ready to operate.

Signals in normal operation

- During normal operation, water temperature values alternate on the display: output, input and the difference between the two.

Signals in the event of fault

In the event of fault the display blinks indicating an operational code (first letter on the display: "E" = error, or "U" = warning). The display rotates after the values of the outlet water temperature, the inlet and the difference between them.

If multiple events are active, they are shown in sequence, ordered by increasing code number. If warning or error events are active, the left green symbol, shown together with water temperature data, blinks. If it is a permanent error or warning the appliance stops. (Table 8.1 p. 35).

7.5 RESTARTING A LOCKED-DOWN UNIT

Fault signals on the display

In the event of locked-down appliance, an operational code flashes on the display (first green figure on the left, letter "U" = warning or "E" = error).

- To restart the appliance you must know and perform the procedure concerning the issue signalled and identified by the code (Paragraph 8.1 p. 35).
- Only act if you are familiar with the issue and with the procedure (technical expertise and professional qualifications might be required).
- If you do not know the code, the problem, or the procedure, or you do not have sufficient skills, and in any case of doubt, contact the TAC.

Locked-down appliance

An external intervention (reset or repair) is required due to an appliance fault or problem with the system.

- A reset may be enough for a temporary and provisional fault.
- For a fault or breakdown, alert the maintenance technician or TAC.

Reset

There are two options for resetting a fault:

1. If the appliance is connected to a DDC or to a CCP/CCI you may act through the control device, as described in the relevant manual.
2. You may act directly from the S61 board as described below (if the appliance is controlled with external request, this is the only option).

How to perform reset from the S61 board

To perform the reset directly from the S61 board:

1. Access Menu 2 under Parameter "_20", to reset flame block (Error E412), or Parameter "_21", for any
other generic reset, turning and pressing the knob; "2_20"/"2_21" must be displayed (procedure Paragraph 5.2 p. 31).

2. Press the knob to display the flashing reset request (e.g. "reS1" to reset flame block).
3. Press the knob again (the second time) to perform the reset; the reset request stops flashing, then "2_XX" is displayed again (e.g. "2_20"). The reset operation has been performed.
4. Exit menu 2 and the menu list, by selecting and pressing letter "E" twice, and go back to the normal display of detected temperature data.

### 7.6 PERIODS OF INACTIVITY

#### Avoid emptying the installation

Emptying the system may cause damage due to corrosion of the water pipes.

#### Deactivate the system in winter

Should you intend to stop the appliance in the winter season, ensure at least one of the following conditions:
1. antifreeze function active (Paragraph 3.5 p. 20)
2. sufficient anti-icing glycol (Paragraph 3.6 p. 20)

#### Prolonged periods of inactivity

- Should you foresee to leave the appliance inactive for a long period of time, disconnect it from the electrical and gas mains. These operations must be performed by qualified personnel.

### 8 DIAGNOSTICS

#### 8.1 OPERATIVE CODES

<table>
<thead>
<tr>
<th>CODES</th>
<th>DESCRIPTION</th>
<th>Warning (u)</th>
<th>Error (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>Flame controller reset circuit fault</td>
<td>NA</td>
<td>Power cycle the appliance. If the code persists, shows up again in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>401</td>
<td>Limit thermostat trip</td>
<td>Contact the TAC.</td>
<td></td>
</tr>
<tr>
<td>402</td>
<td>Flue gas thermostat trip</td>
<td>Contact the TAC.</td>
<td></td>
</tr>
<tr>
<td>405</td>
<td>Outdoor temperature exceeding operational limits</td>
<td>NA</td>
<td>Reset is automatic when the triggering condition ceases.</td>
</tr>
<tr>
<td>406</td>
<td>Outdoor temperature below operational limits</td>
<td>Non-blocking Warning (informative code). Reset is automatic when the triggering condition ceases.</td>
<td>NA</td>
</tr>
<tr>
<td>407</td>
<td>High generator temperature</td>
<td>Reset is automatic when the triggering condition ceases.</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>408</td>
<td>Flame controller error</td>
<td>NA</td>
<td>Contact authorised Technical Assistance</td>
</tr>
<tr>
<td>410</td>
<td>Low hot water flow</td>
<td>Reset is automatic when the triggering condition ceases.</td>
<td>Check and clean water filters on the system. Check for air in the system. Check water flow pump. Power cycle the appliance. Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>411</td>
<td>Insufficient rotation of oil pump</td>
<td>Reset occurs automatically 20 minutes after the code is generated</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again in case of doubt, contact the TAC.</td>
</tr>
</tbody>
</table>

#### How to deactivate the appliance for long periods of time

1. Switch the appliance off (Paragraph 6.2 p. 32).
2. Only when the appliance is completely off, power it off with the main switch/disconnector switch (Detail GS in Figure 4.2 p. 26).
3. Close the gas valve.
4. If necessary, add water with glycol (if the appliance is disconnected from the power and gas mains, the active anti-icing protection is missing, Paragraph 3.5 p. 20).

#### How to reactivate the appliance after long periods of inactivity

Before reactivating the appliance, the operator/maintenance technician of the system must first of all:
- Check whether any maintenance operations are required (contact the TAC; see Paragraphs 7.2 p. 33 and 7.3 p. 34).
- Check content and quality of the water in the system, and if necessary top it up (Paragraphs 3.8 p. 21, 3.7 p. 20 and 3.6 p. 20).
- Ensure the flue gas exhaust duct is not obstructed, and that the condensate drain is clean.

After completing the above checks:
1. Open the gas valve and ensure there are no leaks; should gas smell be noticed, close the gas valve again, do not switch any electrical devices on and request intervention by qualified personnel.
2. Power on with the main power supply switch (GS, Figure 4.2 p. 26).
3. Switch on the appliance by means of the provided control device (DDC, CCP/CCI or external request, Paragraph 4.4 p. 27).
<table>
<thead>
<tr>
<th>CODES</th>
<th>DESCRIPTION</th>
<th>Warning (u)</th>
<th>Error (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>412</td>
<td>Flame controller lockout</td>
<td>Reset is automatic up to 4 attempts (in about 5 minutes).</td>
<td>Check gas supply. Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 20). Contact the TAC.</td>
</tr>
<tr>
<td>416</td>
<td>Hot water delivery temperature probe fault</td>
<td>NA</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>417</td>
<td>Hot water inlet temperature probe fault</td>
<td>NA</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>420</td>
<td>Generator temperature probe fault</td>
<td>NA</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>422</td>
<td>Water flowmeter fault</td>
<td>NA</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>423</td>
<td>Air-gas mix temperature probe fault</td>
<td>NA</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>424</td>
<td>Flue gas temperature probe fault</td>
<td>Reset is automatic when the triggering condition ceases.</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>425</td>
<td>Clogged condensate drain</td>
<td>NA</td>
<td>Check and clean condensate discharge. Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>426</td>
<td>Generator fins temperature probe fault</td>
<td>Reset is automatic when the triggering condition ceases.</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>428</td>
<td>Flame controller error</td>
<td>NA</td>
<td>Power off the appliance. Contact the TAC.</td>
</tr>
<tr>
<td>429</td>
<td>Gas solenoid valve without electrical power</td>
<td>Reset occurs automatically if the gas solenoid valve switches on again within 10 minutes (with central flame control unit on).</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>430</td>
<td>High flue gas or generator fins temperature</td>
<td>Reset is automatic when the triggering condition ceases.</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>431</td>
<td>Hot water temperature exceeding operational limits</td>
<td>Check configuration of other heat generators on the system. Check water flow. Check system thermal load. Reset is automatic when the triggering condition ceases.</td>
<td>NA</td>
</tr>
<tr>
<td>434</td>
<td>-</td>
<td>NA</td>
<td>Contact the TAC.</td>
</tr>
<tr>
<td>436</td>
<td>Blower fault</td>
<td>Reset occurs automatically 20 minutes after the code is generated.</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>437</td>
<td>Low air-gas mix temperature</td>
<td>Non-blocking Warning (informative code). The code is reset automatically when the triggering condition ceases.</td>
<td>NA</td>
</tr>
<tr>
<td>444</td>
<td>Evaporator temperature probe fault</td>
<td>NA</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>446</td>
<td>High hot water inlet temperature</td>
<td>Check configuration of other heat generators on the system. Reset is automatic and occurs if the generating condition ceases with circulating pump on or 20 minutes after the code is generated with circulating pump off.</td>
<td>NA</td>
</tr>
<tr>
<td>447</td>
<td>Hot water inlet temperature below operational limits</td>
<td>Reset occurs automatically when the generating cause resolves or 430 seconds after the code is generated.</td>
<td>Reset occurs automatically when the condition that generated the code ceases. If the code shows up again or in case of doubt contact the TAC.</td>
</tr>
<tr>
<td>448</td>
<td>High hot water differential temperature</td>
<td>Reset occurs automatically 20 minutes after the code is generated.</td>
<td>Reset occurs automatically when the condition that generated the code ceases. If the code shows up again or in case of doubt contact the TAC.</td>
</tr>
<tr>
<td>449</td>
<td>Missing auxiliary board</td>
<td>NA</td>
<td>Contact the TAC.</td>
</tr>
<tr>
<td>452</td>
<td>Defrosting cycle activated</td>
<td>Non-blocking Warning (informative code). The code clears automatically when execution of defrosting ends.</td>
<td>NA</td>
</tr>
<tr>
<td>CODES</td>
<td>DESCRIPTION</td>
<td>Warning (u)</td>
<td>Error (E)</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>453</td>
<td>Water flow while system in cooling mode</td>
<td>Reset is automatic when the triggering condition ceases.</td>
<td>NA</td>
</tr>
<tr>
<td>460</td>
<td>Defrosting valve has failed to open</td>
<td>Non-blocking Warning (informative code). Reset is automatic, however, it is advisable to contact the TAC.</td>
<td>If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>461</td>
<td>Oil pump priming cycle activated</td>
<td>The priming cycle lasts 30’ if activated manually or 10 minutes if activated automatically. Reset is automatic when the triggering condition ceases.</td>
<td>NA</td>
</tr>
<tr>
<td>478</td>
<td>High hot water delivery temperature</td>
<td>Reset is automatic when the triggering condition ceases.</td>
<td>NA</td>
</tr>
<tr>
<td>479</td>
<td>Heating antifreeze function activated</td>
<td>Non-blocking Warning (informative code). The code clears automatically when antifreeze function execution ends.</td>
<td>NA</td>
</tr>
<tr>
<td>80/480</td>
<td>Incomplete functional parameters</td>
<td>Contact the TAC.</td>
<td></td>
</tr>
<tr>
<td>481</td>
<td>Invalid bank 1 parameters</td>
<td>Reset is automatic when the triggering condition ceases.</td>
<td>Contact the TAC.</td>
</tr>
<tr>
<td>482</td>
<td>Invalid bank 2 parameters</td>
<td>Reset is automatic when the triggering condition ceases.</td>
<td>Contact the TAC.</td>
</tr>
<tr>
<td>484</td>
<td>Transformer or 24 Vac fuse fault</td>
<td>NA</td>
<td>Contact the TAC.</td>
</tr>
<tr>
<td>485</td>
<td>Invalid module type configuration parameters</td>
<td>NA</td>
<td>Contact the TAC.</td>
</tr>
<tr>
<td>486</td>
<td>ROM board fault</td>
<td>NA</td>
<td>Contact the TAC.</td>
</tr>
<tr>
<td>487</td>
<td>pRAM board fault</td>
<td>NA</td>
<td>Contact the TAC.</td>
</tr>
<tr>
<td>488</td>
<td>xRAM board fault</td>
<td>NA</td>
<td>Contact the TAC.</td>
</tr>
<tr>
<td>489</td>
<td>Registers board fault</td>
<td>NA</td>
<td>Contact the TAC.</td>
</tr>
<tr>
<td>490</td>
<td>Outdoor temperature probe fault</td>
<td>NA</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>491</td>
<td>Electronic board fault</td>
<td>NA</td>
<td>Contact the TAC.</td>
</tr>
</tbody>
</table>

NA: Not Applicable
### Appendix 9

#### 9.1 PRODUCT FICHE

![Figure 9.1](image)

**Table 8**

Commission Delegated Regulation (EU) No 811/2013

<table>
<thead>
<tr>
<th>Parameters for Heat Pump Space Heaters and Heat Pump Combination Heaters</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
<th>Parameters for Heat Pump Space Heaters and Heat Pump Combination Heaters</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>AVERAGE CLIMATE CONDITIONS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>COLDER CLIMATE CONDITIONS</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated heat output (*)</td>
<td>Prated</td>
<td>30.1</td>
<td>kW</td>
<td>Declared capacity for heating for part load at indoor temperature 20 °C and outdoor temperature Tj</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tj = -7 °C</td>
<td>Pdh</td>
<td>26.5</td>
<td>kW</td>
<td>Tj = -7 °C</td>
<td>PERd</td>
<td>96</td>
<td>%</td>
</tr>
<tr>
<td>Tj = +2 °C</td>
<td>Pdh</td>
<td>16.3</td>
<td>kW</td>
<td>Tj = +2 °C</td>
<td>PERd</td>
<td>121</td>
<td>%</td>
</tr>
<tr>
<td>Tj = +7 °C</td>
<td>Pdh</td>
<td>10.5</td>
<td>kW</td>
<td>Tj = +7 °C</td>
<td>PERd</td>
<td>117</td>
<td>%</td>
</tr>
<tr>
<td>Tj = +12 °C</td>
<td>Pdh</td>
<td>4.5</td>
<td>kW</td>
<td>Tj = +12 °C</td>
<td>PERd</td>
<td>111</td>
<td>%</td>
</tr>
<tr>
<td>Tj = bivalent temperature</td>
<td>Pdh</td>
<td>-</td>
<td>kW</td>
<td>Tj = bivalent temperature</td>
<td>PERd</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>Annual energy consumption</td>
<td>Q HE</td>
<td>200</td>
<td>GJ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>WARMER CLIMATE CONDITIONS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>For air-to-water heat pumps:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated heat output (*)</td>
<td>Prated</td>
<td>29.8</td>
<td>kW</td>
<td>Declared capacity for heating for part load at indoor temperature 20 °C and outdoor temperature Tj</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tj = -7 °C</td>
<td>Pdh</td>
<td>18.2</td>
<td>kW</td>
<td>Tj = -7 °C</td>
<td>PERd</td>
<td>109</td>
<td>%</td>
</tr>
<tr>
<td>Tj = +2 °C</td>
<td>Pdh</td>
<td>11.0</td>
<td>kW</td>
<td>Tj = +2 °C</td>
<td>PERd</td>
<td>118</td>
<td>%</td>
</tr>
<tr>
<td>Tj = +7 °C</td>
<td>Pdh</td>
<td>7.2</td>
<td>kW</td>
<td>Tj = +7 °C</td>
<td>PERd</td>
<td>113</td>
<td>%</td>
</tr>
<tr>
<td>Tj = +12 °C</td>
<td>Pdh</td>
<td>3.3</td>
<td>kW</td>
<td>Tj = +12 °C</td>
<td>PERd</td>
<td>111</td>
<td>%</td>
</tr>
<tr>
<td>Tj = bivalent temperature</td>
<td>Pdh</td>
<td>-</td>
<td>kW</td>
<td>Tj = bivalent temperature</td>
<td>PERd</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>Tj = operation limit temperature</td>
<td>Pdh</td>
<td>29.8</td>
<td>kW</td>
<td>Tj = operation limit temperature</td>
<td>PERd</td>
<td>87</td>
<td>%</td>
</tr>
<tr>
<td>For air-to-water heat pumps:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>For air-to-water heat pumps:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tj = -15 °C (if TOL &lt; -20 °C)</td>
<td>Pdh</td>
<td>24.4</td>
<td>kW</td>
<td>Tj = -15 °C (if TOL &lt; -20 °C)</td>
<td>PERd</td>
<td>90</td>
<td>%</td>
</tr>
<tr>
<td>Annual energy consumption</td>
<td>Q HE</td>
<td>245</td>
<td>GJ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Declared capacity for heating for part load at indoor temperature 20 °C and outdoor temperature Tj</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tj = +2 °C</td>
<td>Pdh</td>
<td>36.6</td>
<td>kW</td>
<td>Tj = +2 °C</td>
<td>PERd</td>
<td>119</td>
<td>%</td>
</tr>
<tr>
<td>Tj = +7 °C</td>
<td>Pdh</td>
<td>23.4</td>
<td>kW</td>
<td>Tj = +7 °C</td>
<td>PERd</td>
<td>122</td>
<td>%</td>
</tr>
<tr>
<td>Tj = +12 °C</td>
<td>Pdh</td>
<td>10.6</td>
<td>kW</td>
<td>Tj = +12 °C</td>
<td>PERd</td>
<td>117</td>
<td>%</td>
</tr>
<tr>
<td>Tj = bivalent temperature</td>
<td>Pdh</td>
<td>-</td>
<td>kW</td>
<td>Tj = bivalent temperature</td>
<td>PERd</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>Annual energy consumption</td>
<td>Q HE</td>
<td>152</td>
<td>GJ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 9.2

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bivalent temperature</td>
<td>$T_{biv}$</td>
</tr>
<tr>
<td>TOL $&lt; T_{designh}$ °C</td>
<td></td>
</tr>
<tr>
<td>Operation limit temperature $TOL$</td>
<td>-22 °C</td>
</tr>
<tr>
<td>Heating water operating limit temperature WTOL</td>
<td>65 °C</td>
</tr>
<tr>
<td>Power consumption in modes other than active mode</td>
<td></td>
</tr>
<tr>
<td>Off mode</td>
<td>$P_{OFF}$ 0.000 kW</td>
</tr>
<tr>
<td>Thermostat-off mode</td>
<td>$P_{TO}$ 0.021 kW</td>
</tr>
<tr>
<td>Standby mode</td>
<td>$P_{SB}$ 0.005 kW</td>
</tr>
<tr>
<td>Crankcase heater mode</td>
<td>$P_{CK}$ - kW</td>
</tr>
<tr>
<td>Supplementary heater</td>
<td>$P_{sup}$ - kW</td>
</tr>
<tr>
<td>Rated heat output</td>
<td></td>
</tr>
<tr>
<td>Type of energy input</td>
<td>monovalent</td>
</tr>
<tr>
<td>Capacity control</td>
<td>variable</td>
</tr>
<tr>
<td>Rated air flow rate, outdoors</td>
<td>11000 m³/h</td>
</tr>
<tr>
<td>Sound power level, indoors/outdoors</td>
<td>$L_{WA}$ / 74 dB</td>
</tr>
<tr>
<td>Rated brine or water flow rate, outdoor heat exchanger</td>
<td>- m³/h</td>
</tr>
<tr>
<td>Additional information required by COMMISSION REGULATION (EU) No 813/2013, Table 2:</td>
<td></td>
</tr>
<tr>
<td>Emissions of nitrogen oxides $NO_x$</td>
<td>40 mg/kWh</td>
</tr>
</tbody>
</table>

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output $P_{rated}$ is equal to the design load for heating $P_{designh}$, and the rated heat output of a supplementary heater $P_{sup}$ is equal to the supplementary capacity for heating $sup(Tj)$.
Robur mission

Robur is dedicated to dynamic progression in research, development and promotion of safe, environmentally-friendly, energy-efficiency products, through the commitment and caring of its employees and partners.