Installation, use and maintenance manual

GAHP A Indoor
air source gas absorption heat pump for installation in technical room

powered by gas and renewable energies
DISPOSAL
The appliance and all its accessories must be disposed of separately in accordance with the regulations in force.

Use of the WEEE symbol (Waste Electrical and Electronic Equipment) indicates that this product cannot be disposed of as household waste. Proper disposal of this product helps to prevent potential negative consequences for the environment and human health.

Revision: A
Code: D-LBR726GB
## INDEX OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I  Introduction</td>
<td>p. 4</td>
</tr>
<tr>
<td>I.1 Recipients</td>
<td>p. 4</td>
</tr>
<tr>
<td>I.2 Control device</td>
<td>p. 4</td>
</tr>
<tr>
<td>II Symbols and definitions</td>
<td>p. 4</td>
</tr>
<tr>
<td>II.1 Key to symbols</td>
<td>p. 4</td>
</tr>
<tr>
<td>II.2 Terms and definitions</td>
<td>p. 4</td>
</tr>
<tr>
<td>III Warnings</td>
<td>p. 4</td>
</tr>
<tr>
<td>III.1 General and safety warnings</td>
<td>p. 4</td>
</tr>
<tr>
<td>III.2 Conformity</td>
<td>p. 6</td>
</tr>
<tr>
<td>III.3 Exclusions of liability and warranty</td>
<td>p. 6</td>
</tr>
<tr>
<td>1 Features and technical data</td>
<td>p. 7</td>
</tr>
<tr>
<td>1.1 Features</td>
<td>p. 7</td>
</tr>
<tr>
<td>1.2 Dimensions</td>
<td>p. 7</td>
</tr>
<tr>
<td>1.3 Components</td>
<td>p. 9</td>
</tr>
<tr>
<td>1.4 Electrical wiring diagram</td>
<td>p. 12</td>
</tr>
<tr>
<td>1.5 Electronic boards</td>
<td>p. 13</td>
</tr>
<tr>
<td>1.6 Operation mode</td>
<td>p. 14</td>
</tr>
<tr>
<td>1.7 Controls</td>
<td>p. 14</td>
</tr>
<tr>
<td>1.8 Technical characteristics</td>
<td>p. 15</td>
</tr>
<tr>
<td>2 Transport and positioning</td>
<td>p. 17</td>
</tr>
<tr>
<td>2.1 Warnings</td>
<td>p. 17</td>
</tr>
<tr>
<td>2.2 Handling</td>
<td>p. 17</td>
</tr>
<tr>
<td>2.3 Installation premises</td>
<td>p. 17</td>
</tr>
<tr>
<td>2.4 Minimum clearance distances</td>
<td>p. 17</td>
</tr>
<tr>
<td>2.5 Mounting base</td>
<td>p. 18</td>
</tr>
<tr>
<td>3 Heating engineer</td>
<td>p. 18</td>
</tr>
<tr>
<td>3.1 Warnings</td>
<td>p. 18</td>
</tr>
<tr>
<td>3.2 Hydraulic system</td>
<td>p. 18</td>
</tr>
<tr>
<td>3.3 Hydraulic connections</td>
<td>p. 18</td>
</tr>
<tr>
<td>3.4 Water circulation pump</td>
<td>p. 19</td>
</tr>
<tr>
<td>3.5 Antifreeze function</td>
<td>p. 19</td>
</tr>
<tr>
<td>3.6 Antifreeze liquid</td>
<td>p. 19</td>
</tr>
<tr>
<td>3.7 System water quality</td>
<td>p. 20</td>
</tr>
<tr>
<td>3.8 System filling</td>
<td>p. 20</td>
</tr>
<tr>
<td>3.9 Fuel gas supply</td>
<td>p. 20</td>
</tr>
<tr>
<td>3.10 Combustion products exhaust</td>
<td>p. 21</td>
</tr>
<tr>
<td>3.11 Flue gas condensate discharge</td>
<td>p. 22</td>
</tr>
<tr>
<td>3.12 Defrosting water drainage</td>
<td>p. 23</td>
</tr>
<tr>
<td>3.13 Safety valve drain</td>
<td>p. 23</td>
</tr>
<tr>
<td>3.14 Fan air ducting</td>
<td>p. 23</td>
</tr>
<tr>
<td>4 Electrical installer</td>
<td>p. 23</td>
</tr>
<tr>
<td>4.1 Warnings</td>
<td>p. 23</td>
</tr>
<tr>
<td>4.2 Electrical systems</td>
<td>p. 24</td>
</tr>
<tr>
<td>4.3 Electrical power supply</td>
<td>p. 24</td>
</tr>
<tr>
<td>4.4 Set-up and control</td>
<td>p. 25</td>
</tr>
<tr>
<td>4.5 Water circulation pump</td>
<td>p. 28</td>
</tr>
<tr>
<td>5 First start-up</td>
<td>p. 29</td>
</tr>
<tr>
<td>5.1 Preliminary checks</td>
<td>p. 29</td>
</tr>
<tr>
<td>5.2 Electronic adjustment on the machine – Menu and parameters of the S61 board</td>
<td>p. 30</td>
</tr>
<tr>
<td>5.3 Modifying settings</td>
<td>p. 31</td>
</tr>
<tr>
<td>6 Normal operation</td>
<td>p. 31</td>
</tr>
<tr>
<td>6.1 Warnings</td>
<td>p. 31</td>
</tr>
<tr>
<td>6.2 Switch on and off</td>
<td>p. 31</td>
</tr>
<tr>
<td>6.3 Modifying settings</td>
<td>p. 32</td>
</tr>
<tr>
<td>6.4 Efficiency</td>
<td>p. 32</td>
</tr>
<tr>
<td>7 Maintenance</td>
<td>p. 32</td>
</tr>
<tr>
<td>7.1 Warnings</td>
<td>p. 32</td>
</tr>
<tr>
<td>7.2 Pre-emptive maintenance</td>
<td>p. 32</td>
</tr>
<tr>
<td>7.3 Scheduled routine maintenance</td>
<td>p. 32</td>
</tr>
<tr>
<td>7.4 Messages on the display</td>
<td>p. 33</td>
</tr>
<tr>
<td>7.5 Restarting a locked-down unit</td>
<td>p. 33</td>
</tr>
<tr>
<td>7.6 Periods of inactivity</td>
<td>p. 33</td>
</tr>
<tr>
<td>8 Diagnostics</td>
<td>p. 34</td>
</tr>
<tr>
<td>8.1 Operative codes</td>
<td>p. 34</td>
</tr>
<tr>
<td>9 Appendices</td>
<td>p. 37</td>
</tr>
<tr>
<td>9.1 Product fiche</td>
<td>p. 37</td>
</tr>
<tr>
<td>9.2 Safety devices</td>
<td>p. 38</td>
</tr>
</tbody>
</table>
I INTRODUCTION

Installation, use and maintenance manual

This Manual is an integral part of the GAHP A Indoor unit and must be handed to the end user together with the appliance.

I.1 RECIPIENTS

This Manual is intended for:

- **End user**, for appropriate and safe use of the appliance.
- **Qualified installer**, for correct appliance installation.
- **Planner**, for specific information on the appliance.

I.2 CONTROL DEVICE

In order to be able to work, the GAHP A Indoor unit needs a control device (DDC, CCP/CCI or external requests), which must be connected by the installer.

II SYMBOLS AND DEFINITIONS

II.1 KEY TO SYMBOLS

- **DANGER**
- **WARNING**
- **NOTE**
- **PROCEDURE**
- **REFERENCE (to other document)**

II.2 TERMS AND DEFINITIONS

**GAHP Appliance/Unit** = equivalent terms, both used to designate the gas powered absorption heat pump GAHP (Gas Absorption Heat Pump).

**TAC** = Technical Assistance Centre authorised by Robur.

**External request** = generic control device (e.g. thermostat, clock or any other system) equipped with a voltage-free NO contact and used as control to start/stop the GAHP unit.

**CCI Controller** (Comfort Controller Interface) = optional Robur control device which lets you manage up to three modulating heat only GAHP units (A, WS, GS).

**CCP Controller** (Comfort Control Panel) = Robur control device which lets you manage in modulation mode up to three GAHP units and all system components (probes, diverter/mixing valves, circulating pumps), including any integration boiler.

**DDC Control** (Direct Digital Controller) = optional Robur adjustment device to control one or more Robur appliances (GAHP heat pumps, GA chillers and AY00-120 boilers) in ON/OFF mode.

**RB100/RB200 Devices** (Robur Box) = optional interface devices complementary to DDC, which may be used to broaden its functions (heating/cooling/DHW production service demands, and control of system components such as third party generators, adjustment valves, circulators, probes).

**Heat generator** = equipment (e.g. boiler, heat pump, etc.) producing heating and/or DHW.

**GUE** (Gas Utilization Efficiency) = efficiency index of gas heat pumps, equal to the ratio between the thermal energy produced and the energy of the fuel used (relative to LCV, lower calorific value).

**First start-up** = appliance commissioning operation which may only and exclusively be carried out by a TAC.

**S61/Mod10/W10 Boards** = electronic boards on the GAHP unit, to control all functions and to provide interface with other devices and with the user.

III WARNINGS

III.1 GENERAL AND SAFETY WARNINGS

**Installer's qualifications**

Installation must exclusively be performed by a qualified firm and by qualified personnel, with specific knowledge on heating, cooling, electrical systems and gas appliances, in compliance with the laws in force in the Country of installation.

**Declaration of conformity**

Upon completing installation, the installing firm shall issue to the owner/client the appliance’s workmanlike conformity declaration, according to national/local regulations in force and the manufacturer's instructions/provisions.

**Misuse**

The appliance must only be used for the purposes for which it has been designed. Any other use is deemed hazardous. Incorrect use may affect operation, duration and safety of the appliance. Adhere to the manufacturer's instructions.

**Hazardous situations**

- **Do not start the appliance in hazardous conditions, such as:** gas smell, problems with the plumbing/electrical/gas system, parts of the appliance under water or damaged, malfunctioning, disabling or bypassing control and safety devices.
- **In case of danger, request intervention by qualified personnel.**
- **In case of danger, switch off the electrical power and gas supplies only if this can be done in total safety.**
Do not entrust children, persons with physical, sensory or mental disabilities or persons with poor knowledge and experience with use of the appliance.

**Gas component tightness**
- Before performing any operation on gas ducting components, close the gas valve.
- Upon completing any procedure, perform the tightness test according to regulations in force.

**Gas smell**
If you smell gas:
- Do not use electrical devices such as telephones, multimeters or other equipment that may cause sparks next to the appliance.
- Shut off the gas supply by turning the valve off.
- Switch off the power supply via the external disconnect switch in the power supply electrical panel.
- Use a telephone away from the appliance to ask for intervention from qualified personnel.

**Poisoning**
- Ensure the flue gas ducts are tightness and compliant with the regulations in force.
- Upon completing any procedure, ensure components are tightness.

**Moving parts**
The appliance contains moving parts.
- Do not remove guards during operation, and in any case prior to disconnecting the power supply.

**Burn hazard**
The appliance contains very hot parts.
- Do not open the appliance and do not touch internal components before the appliance has cooled down.
- Do not touch the flue gas exhaust before it has cooled down.

**Pressure vessels**
The appliance has a sealed circuit classified as pressure vessel, the tightness of which is tested by the manufacturer.
- Do not carry out any intervention on the sealed circuit or on the appliance's valves.

**Water-ammonia solution**
The GAHP/GA unit uses the ammonia-water absorption cycle. The water-ammonia solution is contained in the sealed circuit. The solution is harmful for health if it is ingested, inhaled or comes in contact with the skin.
- In the event of coolant leak keep away and disconnect the power and gas supply (only if it is possible to do so with no danger).
- Ask for TAC intervention.

**Electrocution hazard**
- Disconnect the electrical power supply before any operation on appliance components.
- For electrical connections exclusively use compliant components and according to the specifications provided by the manufacturer.
- Ensure the appliance cannot be accidentally switched back on.

**Earthing**
Electrical safety depends on effective earthing system, correctly connected to the appliance and installed according to the regulations in force.

**Distance from combustible or flammable materials**
- Do not deposit flammable materials (paper, diluents, paints, etc.) near the appliance.

**Limescale and corrosion**
Depending on the chemical/physical properties of the system water, limescale or corrosion may damage the appliance (Paragraph 3.7 p. 20).
- Check system sealing.
- Avoid frequent top-ups.

**Chloride concentration**
The concentration of chlorides or free chlorine in the system water must not exceed the values in Table 3.2 p. 20.

**Aggressive substances in the air**
Halogenated hydrocarbons containing chlorine and fluorine compounds cause corrosion. The air of the installation site must be free from aggressive substances.

**Acid flue gas condensate**
- Discharge the acid condensate of combustion flue gas, as indicated in Paragraph 3.11 p. 22, in compliance with current exhaust regulations.

**Switching the appliance off**
Disconnecting the power supply while the appliance is running may cause permanent damage to internal components.
- Except in the case of danger, do not disconnect the power supply to switch off the appliance, but always and exclusively act through the provided control device (DDC, CCP/CCI or external request).

**In the event of failure**
Operations on internal components and repairs may exclusively be carried out by a TAC, using only original parts.
- In the event of failure of the appliance and/or breakage of any component, do not attempt to repair and/or restore and immediately contact the TAC.

**Routine maintenance**
Proper maintenance assures the efficiency and good operation of the appliance over time.
- Maintenance must be performed according to the manufacturer’s instructions (see Chapter 7 p. 32) and in
Warnings

compliance with current regulations.
- Appliance maintenance and repairs may only be entrusted to firms legally authorised to work on gas appliances and systems.
- Enter into a maintenance contract with an authorised specialised firm for routine maintenance and for servicing in case of need.
- Use only original parts.

Decommissioning and disposal
If the appliance is to be disposed of, contact the manufacturer for its disposal.

Keep the Manual
This Installation, use and maintenance manual must always accompany the appliance and must be handed to the new owner or installer in the event of sale or removal.

III.2 CONFORMITY

EU directives and standards
The absorption heat pumps of the GAHP series are certified as conforming to standard EN 12309 and comply with the essential requirements of the following Directives:
- 2016/426/EU “Gas Appliances Regulation” as amended and added.
- 811/2013/EU “Energy-Related Products regulation” as amended and added.
- 813/2013/EU “Ecodesign requirements regulation” as amended and added.

Furthermore, they comply with the requirements of the following standards:
- EN 677 Specific requirements for condensing boilers with nominal heat input up to 70 kW.
- EN 378 Refrigerating systems and heat pumps.

Other applicable provisions and standards
The design, installation, operation and maintenance of the systems shall be carried out in compliance with current applicable regulations, depending on the Country and location, and in accordance with the manufacturer’s instructions. In particular, regulations regarding the following shall be complied with:
- Gas systems and equipment.
- Electrical systems and equipment.
- Heating and air conditioning systems, and heat pumps.
- Environmental protection and combustion products exhaust.
- Fire safety and prevention.
- Any other applicable law, standard and regulation.

III.3 EXCLUSIONS OF LIABILITY AND WARRANTY

Any contractual or extra-contractual liability of the manufacturer for any damage caused by incorrect installation and/or improper use and/or failure to comply with regulations and with the manufacturer’s directions/instructions shall be disclaimed.

In particular, the warranty on the appliance may be rendered void by the following conditions:
- Incorrect installation.
- Misuse.
- Failure to comply with the manufacturer’s indications on installation, use and maintenance.
- Alteration or modification of the product or any part thereof.
- Extreme operational conditions or however outside of the operational ranges set forth by the manufacturer.
- Damages caused by external agents such as salts, chlorine, sulphur or other chemical substances contained in the installation water or present in the air of the installation site.
- Abnormal actions transmitted to the appliance by the plant or installation (mechanical stresses, pressure, vibrations, thermal expansion, electrical surges...).
- Accidental damages or due to force majeure.
1 FEATURES AND TECHNICAL DATA

1.1 FEATURES

Operation
Based on the thermodynamic water-ammonia absorption cycle ($H_2O-NH_3$), the appliance produces hot water using outdoor air as a renewable energy source (cold source) and natural gas (or LPG) as primary energy.

The thermodynamic cycle takes place within a hermetically sealed circuit, in welded construction, perfectly tight, factory-tested, which does not require any maintenance or coolant top-ups.

Mechanical and thermo-hydraulic components
► Steel sealed circuit, externally treated with epoxy paint.
► Sealed combustion chamber (type C).
► Metal mesh radiant burner, equipped with ignition electrodes and flame detection, managed by an electronic flame control box.
► Titanium stainless steel shell-and-tube water heat exchanger, externally insulated.
► Stainless steel, shell-and-tube recovery exchanger of flue gas latent heat.
► Air exchanger with finned coil, with steel pipe and aluminium fins.
► Automatic microprocessor-controlled finned coil defrosting valve.
► Low-noise fan (reduction of electrical consumption and reduction of sound emission).

Control and safety devices
► S61 electronic board with microprocessor, LCD display and knob.
► Mod10 additional electronic board (integrated in S61).
► Auxiliary W10 electronic board.
► Water flowmeter.
► Generator limit thermostat, with manual reset.
► Flue gas thermostat, with manual reset.
► Generator fins temperature probe.
► Sealed circuit safety relief valve.
► Bypass valve, between high and low-pressure circuits.
► Ionization flame control box.
► Double shutter electric gas valve.
► Antifreeze functions for hydraulic circuit.
► Condensate discharge sensor.

1.2 DIMENSIONS

Figure 1.1 Service plate - Hydraulic/gas unions detail

<table>
<thead>
<tr>
<th>G</th>
<th>Gas connection Ø 3/4” F</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Water inlet connection Ø 1 1/4” F</td>
</tr>
<tr>
<td>A</td>
<td>Water outlet connection Ø 1 1/4” F</td>
</tr>
</tbody>
</table>
Figure 1.2 GAHP A Indoor dimensions
1.3 COMPONENTS

Figure 1.3 Internal components - front view

1 Fan
2 Gas valve
3 Combustion air intake
4 Combustion blower
5 Ignition transformer
6 Tmix air-gas mixture temperature probe
7 Oil pump
8 Water inlet connection Ø 1 1/4" F
9 Water outlet connection Ø 1 1/4" F
10 Gas connection Ø 3/4" F
11 TA outdoor temperature probe
12 Air pressure intake
Figure 1.4 Internal components - left side view

1. Manual reset of the flue exhaust thermostat
2. Safety valve drain
3. Condensate drain siphon
4. Sensing element of the flue exhaust thermostat
5. DN80 flue exhaust connection
6. Generator fins temperature probe
7. Flame sensor / ignition electrodes
8. Condensate level sensor
Figure 1.5 Internal components - right side view

1. TG generator temperature probe
2. Safety valve
3. Delivery pipe flowmeter
4. Flow temperature probe
5. Limit thermostat
6. Defrosting valve
7. Return temperature probe
8. Teva evaporator temperature probe
1.4  ELECTRICAL WIRING DIAGRAM

Figure 1.6 Wiring diagram of the appliance with low consumption fan (S1)

+ SCH1  Controller S61
+ SCH2  W10 circuit board
+ SCH3  Mod10 circuit board
+ TER  Power supply terminal block
+ CNTBOX  Flame controller
+ PWRTR  Board transformer
+ BLW  Blower
+ PMP  Oil pump
+ IGNTR  Ignition transformer
+ IGN  Ignition electrodes
+ FLS  Flame sensor
+ LS  Gas valve ON indicator lamp
+ GV  Gas solenoid valve
+ TC  Manual flue gas thermostat
+ TL  Generator limit thermostat
+ FM  Flowmeter
+ CWS  Condensate water sensor
+ VD  Defrosting valve
+ FAN  Fan
+ CF  Filter capacitor
+ THRC  Hot water return temperature probe
+ THMC  Hot water flow temperature probe
+ TMIX  Combustion air temperature sensor
+ TA  Ambient air temperature sensor
+ TG  Generator temperature sensor
+ TF  Fumes temperature sensor or generator fin sensor
+ TEVA  Evaporator outlet temperature sensor
+ MA  Terminal block
+ REED  Oil pump rotation sensor
1.5 ELECTRONIC BOARDS

Electronic boards (S61+Mod10)
The unit’s electrical board contains:

▶ **Electronic board S61** (Figure 1.7 p. 13), with microprocessor, it controls the appliance and displays data, messages and operative codes. The appliance is monitored and programmed by interacting with the display and the knob.

▶ **Auxiliary Mod10 electronic board** (Figure 1.8 p. 14), overlapping S61, it handles power modulation of the burner, fan and water circulation pump.

▶ **Satellite W10 electronic board** (Figure 1.9 p. 14), interconnected to the S61 board and located next to it, used to control defrosting operations of the GAHP unit.

![Electronic board S61 and other connections](image-url)

**Figure 1.7** Electronic board S61
1.6 OPERATION MODE

ON/OFF or modulating operation

The GAHP unit may work in two modes:

- Mode (1) ON/OFF, i.e. ON (at full power) or OFF, with circulating pump at constant or variable flow.
- Mode (2) MODULATING, i.e. at variable load from 50% to 100% of heating capacity, with circulating pump at variable flow.

For each mode, (1) or (2), specific control systems and devices are provided (Paragraph 1.7 p. 14).

1.7 CONTROLS

Control device

The appliance may only work if it is connected to a control device, selected from:

- (1) DDC control
- (2) CCP/CCI control
- (3) external request

1.7.1 Control system (1) with DDC (GAHP unit ON/OFF)

The DDC controller is able to control appliances, a single GAHP unit, or even several Robur GAHP/GA/AY units in cascade, only in ON/OFF mode (non modulating). For more details refer to the DDC, RB100, RB200 manuals and the design manual.

DDC Controller

The main functions are:

- Setup and control of one (or more) Robur units of the absorption line (GAHP, GA, AY).
- Data display and parameters setting.
1.7.2 Control system (2) with CCP/CCI (modulating GAHP unit)

The CCP/CCI control is able to control up to 3 GAHP units in modulating mode (therefore A/WS/GS only, excluding AR/ACF/AY), plus any integration ON/OFF boiler. For additional details and diagrams refer to the CCP/CCI manual and the design manual.

1.8 TECHNICAL CHARACTERISTICS

Table 1.1 GAHP-A Indoor technical data

<table>
<thead>
<tr>
<th>Heating mode</th>
<th>GAHP A Indoor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seasonal space heating energy efficiency class (ErP)</td>
<td>medium-temperature application (55 °C) - A+</td>
</tr>
<tr>
<td></td>
<td>low-temperature application (35 °C) - A+</td>
</tr>
<tr>
<td>Heat output</td>
<td>Outdoor temperature/Delivery temperature</td>
</tr>
<tr>
<td>A/7W35 kW</td>
<td>kW 41.3</td>
</tr>
<tr>
<td>A/7W50 kW</td>
<td>kW 38.3</td>
</tr>
<tr>
<td>A/7W65 kW</td>
<td>kW 31.1</td>
</tr>
<tr>
<td>A-7W50 kW</td>
<td>kW 32.0</td>
</tr>
<tr>
<td>GUE efficiency</td>
<td>Outdoor temperature/Delivery temperature</td>
</tr>
<tr>
<td>A/7W35 %</td>
<td>% 164</td>
</tr>
<tr>
<td>A/7W50 %</td>
<td>% 152</td>
</tr>
<tr>
<td>A/7W65 %</td>
<td>% 124</td>
</tr>
<tr>
<td>A-7W50 %</td>
<td>% 127</td>
</tr>
<tr>
<td>Heat input</td>
<td>nominal (1013 mbar - 15 °C) (1) kW 25.7</td>
</tr>
<tr>
<td></td>
<td>real kW 25.2</td>
</tr>
<tr>
<td>Hot water delivery temperature</td>
<td>maximum for heating °C 65</td>
</tr>
<tr>
<td></td>
<td>maximum for DHW °C 70</td>
</tr>
<tr>
<td>Hot water return temperature</td>
<td>maximum for heating °C 55</td>
</tr>
<tr>
<td></td>
<td>maximum for DHW °C 60</td>
</tr>
<tr>
<td></td>
<td>minimum temperature in continuous operation °C 30 (2)</td>
</tr>
<tr>
<td>Heating water flow</td>
<td>nominal l/h 2500</td>
</tr>
<tr>
<td></td>
<td>maximum l/h 4000</td>
</tr>
<tr>
<td></td>
<td>minimum l/h 1400</td>
</tr>
<tr>
<td>Pressure drop heating mode</td>
<td>nominal water pressure (A/7W50) bar 0.31 (3)</td>
</tr>
<tr>
<td>Ambient air temperature (dry bulb)</td>
<td>maximum °C 45</td>
</tr>
<tr>
<td></td>
<td>minimum °C -15 (4)</td>
</tr>
<tr>
<td>Electrical specifications</td>
<td>voltage V 230</td>
</tr>
<tr>
<td></td>
<td>type SINGLE PHASE</td>
</tr>
<tr>
<td></td>
<td>frequency Hz 50</td>
</tr>
<tr>
<td>Electrical power absorption</td>
<td>nominal kW 0.87 (5)</td>
</tr>
<tr>
<td></td>
<td>minimum kW 0.50 (6)</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP XSD</td>
</tr>
</tbody>
</table>

Notes:
1. Relative to NCV (net calorific value).
2. In transient operation, lower temperatures are allowed.
3. For flows other than nominal see Design Manual, Pressure losses Paragraph.
4. As an option, a version for operation down to -30 °C is available.
5. Value stated with free drain. ±10% according to the power supply voltage and tolerance on electrical motors consumption.
6. ±10% depending on power voltage and absorption tolerance of electric motors.
7. PCI (G20) 3402 MJ/m³ (15 °C - 1013 mbar).
8. PCI (G25) 2925 MJ/m³ (15 °C - 1013 mbar).
9. PCI (G27) 2789 MJ/m³ (15 °C - 1013 mbar).
10. PCI (G30/G31) 4634 MJ/kg (15 °C - 1013 mbar).
11. Sound power values detected in compliance with the intensity measurement methodology set forth by standard EN ISO 9614. Data referred to 50 °C delivery temperature.
12. Maximum sound pressure levels in free field, with directionality factor 2, obtained from the sound power level in compliance with standard EN ISO 9614. Data referred to 50 °C delivery temperature.
13. Value stated with free drain.
### Features and technical data

<table>
<thead>
<tr>
<th>Features and technical data</th>
<th>GAHP A Indoor</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Gas consumption</strong></td>
<td></td>
</tr>
<tr>
<td>G20 natural gas (nominal)</td>
<td>m³/h</td>
</tr>
<tr>
<td>G20 natural gas (min)</td>
<td>m³/h</td>
</tr>
<tr>
<td>G25 (nominal)</td>
<td>m³/h</td>
</tr>
<tr>
<td>G25 (min)</td>
<td>m³/h</td>
</tr>
<tr>
<td>G27 (nominal)</td>
<td>m³/h</td>
</tr>
<tr>
<td>G27 (min)</td>
<td>m³/h</td>
</tr>
<tr>
<td>G30 (nominal)</td>
<td>kg/h</td>
</tr>
<tr>
<td>G30 (min)</td>
<td>kg/h</td>
</tr>
<tr>
<td>G31 (nominal)</td>
<td>kg/h</td>
</tr>
<tr>
<td>G31 (min)</td>
<td>kg/h</td>
</tr>
<tr>
<td><strong>NOₓ emission class</strong></td>
<td>-</td>
</tr>
<tr>
<td><strong>NOₓ emission</strong></td>
<td>ppm</td>
</tr>
<tr>
<td><strong>CO emission</strong></td>
<td>ppm</td>
</tr>
<tr>
<td><strong>sound power Lₚ (max)</strong></td>
<td>dB(A)</td>
</tr>
<tr>
<td><strong>sound power Lₚ (min)</strong></td>
<td>dB(A)</td>
</tr>
<tr>
<td><strong>sound pressure Lₚ at 5 metres (max)</strong></td>
<td>dB(A)</td>
</tr>
<tr>
<td><strong>sound pressure Lₚ at 5 metres (min)</strong></td>
<td>dB(A)</td>
</tr>
<tr>
<td><strong>minimum storage temperature</strong></td>
<td>°C</td>
</tr>
<tr>
<td><strong>maximum water pressure in operation</strong></td>
<td>bar</td>
</tr>
<tr>
<td><strong>maximum defrosting water flow</strong></td>
<td>l/h</td>
</tr>
<tr>
<td><strong>maximum flow flue condensate</strong></td>
<td>l/h</td>
</tr>
<tr>
<td><strong>Water content inside the apparatus</strong></td>
<td>l</td>
</tr>
<tr>
<td><strong>Water fitting</strong></td>
<td>type</td>
</tr>
<tr>
<td></td>
<td>thread</td>
</tr>
<tr>
<td><strong>Gas connection</strong></td>
<td>type</td>
</tr>
<tr>
<td></td>
<td>thread</td>
</tr>
<tr>
<td><strong>safety valve outlet channel fitting</strong></td>
<td>diameter (Ø)</td>
</tr>
<tr>
<td></td>
<td>residual head</td>
</tr>
<tr>
<td><strong>Flue gas exhaust</strong></td>
<td>type of installation</td>
</tr>
<tr>
<td><strong>Dimensions</strong></td>
<td>width</td>
</tr>
<tr>
<td></td>
<td>depth</td>
</tr>
<tr>
<td></td>
<td>height</td>
</tr>
<tr>
<td><strong>Weight</strong></td>
<td>kg</td>
</tr>
<tr>
<td><strong>required air flow</strong></td>
<td>m³/h</td>
</tr>
<tr>
<td><strong>required air flow at the maximum available head</strong></td>
<td>m³/h</td>
</tr>
<tr>
<td><strong>fan residual head</strong></td>
<td>Pa</td>
</tr>
<tr>
<td><strong>General information</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Cooling fluid</strong></td>
<td>ammonia R717</td>
</tr>
<tr>
<td></td>
<td>water H₂O</td>
</tr>
<tr>
<td><strong>maximum pressure of the cooling circuit</strong></td>
<td>bar</td>
</tr>
</tbody>
</table>

1. Relative to NCV (net calorific value).
2. In transient operation, lower temperatures are allowed.
3. For flows other than nominal see Design Manual, Pressure losses Paragraph.
4. As an option, a version for operation down to -30 °C is available.
5. Value stated with free drain. ±10% according to the power supply voltage and tolerance on electrical motors consumption.
6. ±10% depending on power voltage and absorption tolerance of electric motors.
7. PCI (G20) 34.02 MJ/m³ (15 °C - 1013 mbar).
8. PCI (G25) 29.25 MJ/m³ (15 °C - 1013 mbar).
9. PCI (G27) 27.89 MJ/m³ (15 °C - 1013 mbar).
10. PCI (G30/G31) 46.34 MJ/kg (15 °C - 1013 mbar).
11. Sound power values determined in compliance with the intensity measurement methodology set forth by standard EN ISO 9614. Data referred to 50 °C delivery temperature.
12. Maximum sound pressure levels in free field, with directivity factor 2, obtained from the sound power level in compliance with standard EN ISO 9614. Data referred to 50 °C delivery temperature.
13. Value stated with free drain.

**Table 1.2 PED data**

<table>
<thead>
<tr>
<th>PED data</th>
<th>GAHP A Indoor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components under pressure</td>
<td></td>
</tr>
<tr>
<td>generator</td>
<td>l</td>
</tr>
<tr>
<td>leveling chamber</td>
<td>l</td>
</tr>
<tr>
<td>evaporator</td>
<td>l</td>
</tr>
<tr>
<td>cooling volume transformer</td>
<td>l</td>
</tr>
<tr>
<td>cooling absorber solution</td>
<td>l</td>
</tr>
<tr>
<td>solution pump</td>
<td>l</td>
</tr>
<tr>
<td><strong>test pressure (in air)</strong></td>
<td>bar g</td>
</tr>
<tr>
<td><strong>maximum pressure of the cooling circuit</strong></td>
<td>bar g</td>
</tr>
<tr>
<td><strong>filling ratio</strong></td>
<td>kg of NH₃</td>
</tr>
<tr>
<td><strong>fluid group</strong></td>
<td>-</td>
</tr>
</tbody>
</table>
2 TRANSPORT AND POSITIONING

2.1 WARNINGS

Damage from transport or installation

The manufacturer shall not be liable for any damage during appliance transport and installation.

On-site inspection

- Upon arrival at the site, ensure there is no transport damage on packing, metal panels or finned coil.
- After removing the packing materials, ensure the appliance is intact and complete.

Packing

- Only remove the packing after placing the appliance on site.
- Do not leave parts of the packing within the reach of children (plastic, polystyrene, nails...) since they are potentially dangerous.

Weight

- The crane and lifting equipment must be suitable for the load.
- Do not stand under suspended loads.

2.2 HANDLING

Handling and lifting

- Always handle the appliance in its packing, as delivered by the factory.
- To lift the appliance use straps or slings inserted in the holes of the base (Figure 2.1 p. 17).
- Use lifting beams to avoid damaging the outer panels and finned coil (Figure 2.1 p. 17).
- Comply with safety regulations at the installation site.

2.3 INSTALLATION PREMISES

The installation premises must meet all requirements set forth by laws, standards and regulations of the Country and place of installation concerning gas appliances and cooling appliances.

Do not install inside a room that has no aeration openings.

GAHP A Indoor unit ventilation

The aerothermal appliance requires aerated premises for regular air flow into the finned coil. The air exhaust above the fan mouth must be ducted outside in order to prevent air recirculation towards the aeration openings. Incorrect ventilation may affect efficiency and cause damage to the appliance. The manufacturer shall not be liable for any incorrect choices of the installation premises and setting.

Other appliances

Any other gas appliances in the room must necessarily be type C.

Features of the installation premises

- The premise must be provided with permanent and sufficiently wide ventilation openings to permit even air flow to the finned coil (11000 m³/h).
- The appliance’s flue gas exhaust must be ducted to the outside. The appliance’s flue must not be immediately close to openings or air intakes of buildings, and must comply with environmental regulations.
- The combustion air intake must be ducted from the outside.

Defrosting water drainage

In winter, it is normal for frost to form on the finned coil and for the appliance to perform defrosting cycles.

- To prevent overflowing and damage provide for a drainage system.

Acoustic issues

- Pre-emptively assess the appliance’s sound impact inside the room and to the next rooms and the outside.

2.4 MINIMUM CLEARANCE DISTANCES

Distances from combustible or flammable materials

- Keep the appliance away from combustible or flammable materials or components, in compliance with applicable regulations.

Clearances around the appliance

The minimum clearance distances shown in Figure 2.2 p. 18 (bar any stricter regulations) are required for safety, operation
and maintenance.

Figure 2.2 Clearances

2.5 MOUNTING BASE

Flooring of the utilities room
► Place the appliance on a level flat surface made of fireproof material and able to withstand its weight.

Anti vibration mountings
Although the appliance’s vibrations are minimal, resonance phenomena might occur.
► Use anti-vibration mountings.
► Also provide anti-vibration joints between the appliance and water and gas pipes.

3 HEATING ENGINEER

3.1 WARNINGS

General warnings

Read the warnings in Chapter III.1 p. 4, providing important information on regulations and on safety.

Compliance with installation standards

Installation must comply with applicable regulations in force, based on the installation Country and site, in matters of safety, design, implementation and maintenance of:

► heating systems
► cooling systems
► gas systems
► flue gas exhaust
► flue gas condensate discharge

Installation must also comply with the manufacturer’s provisions.

3.2 HYDRAULIC SYSTEM

Primary and secondary circuit

► In many cases it is advisable to divide the hydraulic system into two parts, primary and secondary circuit, uncoupled by a hydraulic separator, or possibly by a tank that also acts as inertial tank/buffer.

Constant ot variable water flow
The GAHP unit may work with constant or variable water flow, regardless of the ON/OFF or modulating operative mode.
System and components must be designed and installed consistently.

Minimum water content
High thermal inertia is conducive to efficient appliance operation. Very short ON/OFF cycles are to be avoided.
► If necessary, provide for an inertial volume, to be suitably sized (see design manual).

3.3 HYDRAULIC CONNECTIONS

Plumbing fittings
on the right, at the bottom, connection plate (Figure 1.1 p. 7).
► A (= out) 1 1/4” F - WATER OUTLET (m = outlet to the system)
► B (= in) 1 1/4” F - WATER INLET (r = return from the system)

Hydraulic pipes, materials and features

► Use pipes for heating/cooling systems, protected from weathering, insulated for thermal dispersion.

Pipe cleaning

► Before connecting the appliance accurately wash the water and gas piping and any other system component, removing any residue.

Minimum components of primary plumbing circuit
Always provide, near the appliance:
► on water piping, both output and input (m/r)
► 2 antivibration joints on water fittings
► 2 pressure gauges
► 2 isolation ball valves
3.4 WATER CIRCULATION PUMP

The circulation pump (flow and head) must be selected and installed based on pressure losses of plumbing/primary circuit (piping + components + exchange terminals + appliance). For the appliance pressure losses refer to Table 1.1 p. 15 and Design Manual.

(1) Constant flow circulation pump
The primary circulating pump must be obligatorily controlled by the appliance’s electronic board (S61) (see Paragraph 1.5 p. 13).

(2) Variable flow circulation pump
For variable flow operation, use of a Wilo Stratos Para pump is obligatory, supplied as accessory on demand, to be connected to the Mod10 electronic board (see Paragraph 1.5 p. 13). Any other type of pump will give constant flow. Refer to the Design Manual for the features of the Wilo Stratos Para pump.

3.5 ANTIFREEZE FUNCTION

Active antifreeze self-protection
The appliance is equipped with an active antifreeze self-protection system to prevent icing. The anti-icing function (activated by default) automatically starts the primary circulation pump and, if required, the burner too, when the outside temperature approaches zero.

Electrical and gas continuity
The active antifreeze self-protection is only effective if the power and gas supplies are assured. Otherwise, antifreeze liquid might be required.

3.6 ANTIFREEZE LIQUID

Precautions with glycol

The manufacturer disclaims any liability for any damage caused by improper glycol use:
- Always check product suitability and its expiry date with the glycol supplier. Periodically check the product’s preservation state.
- Do not use car-grade antifreeze liquid (without inhibitors), nor zinc-coated piping and fittings (incompatible with glycol).
- Glycol modifies the physical properties of water (density, viscosity, specific heat...). Size the piping, circulation pump and thermal generators accordingly.
- With automatic system water filling, a periodic check of the glycol content is required.

With high glycol percentage (> 20…30%)

If the glycol percentage is ≥30% (for ethylene glycol) or ≥20% (for propylene glycol) the TAC must be alerted before first start-up.

When producing DHW by DHW buffer tank, use propylene glycol only.

Type of antifreeze glycol

Inhibited type glycol is recommended to prevent oxidation phenomena.

Glycol effects
The Table 3.1 p. 20 shows, indicatively, the effects of using a glycol depending on its %.
### 3.7 SYSTEM WATER QUALITY

**Responsibility of the user/operator/installer**

The installer, operator and user must assure system water quality (Table 3.2 p. 20). Failure to comply with the manufacturer’s guidelines may affect operation, integrity and life of the appliance, voiding the warranty.

**System water characteristics**

Free chlorine or water hardness may damage the appliance. Adhere to the chemical-physical parameters in Table 3.2 p. 20 and the regulations on water treatment for residential and industrial heating systems.

#### Table 3.2 Chemical and physical parameters of water

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Measurement unit</th>
<th>Required value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>&gt; 7 (1)</td>
</tr>
<tr>
<td>Chlorides</td>
<td>mg/l</td>
<td>&lt; 1.25 (2)</td>
</tr>
<tr>
<td>Total hardness (CaCO₃)</td>
<td>°d</td>
<td>&lt; 8.4</td>
</tr>
<tr>
<td>Iron</td>
<td>mg/kg</td>
<td>&lt; 0.5 (3)</td>
</tr>
<tr>
<td>Copper</td>
<td>mg/kg</td>
<td>&lt; 0.1 (3)</td>
</tr>
<tr>
<td>Aluminium</td>
<td>mg/l</td>
<td>&lt; 1</td>
</tr>
<tr>
<td>Langelier’s index</td>
<td></td>
<td>0-0.4</td>
</tr>
<tr>
<td>Harmful substances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free chlorine</td>
<td>mg/l</td>
<td>&lt; 0.2 (3)</td>
</tr>
<tr>
<td>Fluorides</td>
<td>mg/l</td>
<td>&lt; 1</td>
</tr>
<tr>
<td>Sulphides</td>
<td></td>
<td>ABSENT</td>
</tr>
</tbody>
</table>

1. With aluminium or light alloys radiators, pH must also be lower than 8 (in compliance with applicable rules)
2. Value referred to the maximum water temperature of 80 °C
3. In compliance with applicable rules

**Water topping up**

The chemical-physical properties of the system’s water may alter over time, resulting in poor operation or excessive topping up.

- Ensure there are no leaks in the installation.
- Periodically check the chemical-physical parameters of the water, particularly in case of automatic topping up.

**Chemical conditioning and washing**

Water treatment/conditioning or system washing carried out carelessly may result in risks for the appliance, the system, the environment and health.

- Contact specialised firms or professionals for water treatment or system washing.

### 3.8 SYSTEM FILLING

**How to fill up the system**

After completing all water, electrical and gas connections:

1. Pressurise (at least 1.5 bar) and vent the hydraulic circuit.
2. Let water flow (with appliance off).
3. Check and clean the filter on the inlet pipe.
4. Repeat items 1, 2 and 3 until the pressure has stabilised (at least 1.5 bar).

### 3.9 FUEL GAS SUPPLY

**Gas connection**

- 3/4” F
  - on the right, at the bottom, connection plate (Figure 1.1 p. 7).
  - Install an anti-vibration connection between the appliance and the gas piping.

**Mandatory shut-off valve**

- Provide a gas shut-off valve (manual) on the gas supply line, next to the appliance, to isolate it when required.
- Perform connection in compliance with applicable regulations.

**Gas pipes sizing**

The gas pipes must not cause excessive pressure drops and, consequently, insufficient gas pressure for the appliance.

**Supply gas pressure**

- This appliance is equipped for a maximum gas supply pressure of 50 mbar.

  The appliance’s gas supply pressure, both static and dynamic, must comply with Table 3.3 p. 20, with tolerance ± 15%.

- Non compliant gas pressure (Table 3.3 p. 20) may damage the appliance and be hazardous.

---

**Table 3.1 Technical data for filling the hydraulic circuit**

<table>
<thead>
<tr>
<th>Glycol %</th>
<th>Water-glycol mixture freezing temperature</th>
<th>Percentage of increase in pressure drops</th>
<th>Loss of efficiency of unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>-3 °C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>-5 °C</td>
<td>6,0%</td>
<td>0,5%</td>
</tr>
<tr>
<td>20</td>
<td>-8 °C</td>
<td>8,0%</td>
<td>1,0%</td>
</tr>
<tr>
<td>25</td>
<td>-12 °C</td>
<td>10,0%</td>
<td>2,0%</td>
</tr>
<tr>
<td>30</td>
<td>-15 °C</td>
<td>12,0%</td>
<td>2,5%</td>
</tr>
<tr>
<td>35</td>
<td>-20 °C</td>
<td>14,0%</td>
<td>3,0%</td>
</tr>
<tr>
<td>40</td>
<td>-25 °C</td>
<td>16,0%</td>
<td>4,0%</td>
</tr>
</tbody>
</table>

**Table 3.3 Network gas pressure**

<table>
<thead>
<tr>
<th>Gas supply pressure</th>
<th></th>
</tr>
</thead>
</table>

---

**Note:**

- Check compatibility of treatment or washing products with operating conditions.
- Do not use aggressive substances for stainless steel or copper.
- Do not leave washing residues.
Vertical pipes and condensate

- Vertical gas pipes must be fitted with siphon and discharge of the condensate that may form inside the pipe.
- If necessary, insulate the piping.

LPG pressure reducers

With LPG the following must be installed:
- A first stage pressure reducer, close to the liquid gas tank.
- A second stage pressure reducer, close to the appliance.

3.10 COMBUSTION PRODUCTS EXHAUST

The appliance is approved for connection to a combustion products exhaust duct for the types shown in Table 1.1 p. 15.

Flue gas exhaust connection
- Ø 80 mm (with gasket), on the left, at the top (Figure 1.2 p. 8).

Combustion air intake fitting
- Ø 80 mm (with gasket), on the left, at the top (Figure 1.2 p. 8).

Flue gas exhaust

Some possible configurations are shown in the Figures 3.2 p. 21, 3.3 p. 22.
Figure 3.3 Type C53 roof flue gas exhaust

It is not allowed to connect several appliances to a single flue, but each appliance must have its own separate flue.

To size the flue refer to Table 3.4 p. 22 and design manual.

The flue must be designed, sized, tested and constructed by a skilled form, with materials and components complying with the regulations in force in the country of installation.

Always provide a socket for flue gas analysis, in an accessible position.

Table 3.4 Flue gas condensate discharge

<table>
<thead>
<tr>
<th>Gas type</th>
<th>Heat input</th>
<th>CO₂ (%)</th>
<th>Flue temperature (°C)</th>
<th>Fumes flow (kg/h)</th>
<th>Residual head (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G20</td>
<td>nominal</td>
<td>9,10</td>
<td>65</td>
<td>42</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>minimum</td>
<td>8,90</td>
<td>46</td>
<td>21</td>
<td>80</td>
</tr>
<tr>
<td>G25</td>
<td>nominal</td>
<td>9,10</td>
<td>63,6</td>
<td>42</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>minimum</td>
<td>8,90</td>
<td>45,7</td>
<td>21</td>
<td>80</td>
</tr>
<tr>
<td>G25.1</td>
<td>nominal</td>
<td>10,10</td>
<td>65</td>
<td>45</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>minimum</td>
<td>9,60</td>
<td>46</td>
<td>23</td>
<td>80</td>
</tr>
<tr>
<td>G27</td>
<td>nominal</td>
<td>9,00</td>
<td>64</td>
<td>42</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>minimum</td>
<td>8,50</td>
<td>46</td>
<td>21</td>
<td>80</td>
</tr>
<tr>
<td>G2.350</td>
<td>nominal</td>
<td>9,00</td>
<td>62,7</td>
<td>42</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>minimum</td>
<td>8,70</td>
<td>46,8</td>
<td>22</td>
<td>80</td>
</tr>
<tr>
<td>G30</td>
<td>nominal</td>
<td>10,40</td>
<td>65</td>
<td>43</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>minimum</td>
<td>10,10</td>
<td>46</td>
<td>22</td>
<td>80</td>
</tr>
<tr>
<td>G31</td>
<td>nominal</td>
<td>9,10</td>
<td>65</td>
<td>48</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>minimum</td>
<td>8,90</td>
<td>46</td>
<td>24</td>
<td>80</td>
</tr>
</tbody>
</table>

3.11 FLUE GAS CONDENSATE DISCHARGE

The GAHP A Indoor unit is a condensing appliance and therefore produces condensation water from combustion flue gases.

Condensate acidity and exhaust regulations

The flue gas condensate contains aggressive acid substances. Refer to applicable regulations in force for condensate exhaust and disposal.

If required, install an acidity neutraliser of adequate capacity.

Do not use gutters to discharge the condensate

Do not discharge the fume condensate in gutters, due to the risk of materials corrosion and ice formation.

Flue gas condensate connection

The fitting for flue gas condensate drain is located on the left side of the appliance (Figure 3.4 p. 23), accessible by removing the suitable door.

The distance L between the sleeve and the base must not exceed 110 mm.

The corrugated condensate discharge pipe must be connected to a suitable discharge manifold.

The junction between the pipe and the manifold must remain visible.

The connection of the discharge to the sewerage system must be made at atmospheric pressure, i.e. by dripping into a siphoned container connected to the sewerage system.

Flue gas condensate discharge manifold

To make the condensate discharge manifold:

- Size the ducts for maximum condensation capacity (Table 1.1 p. 15).

- Use plastic materials resistant to acidity pH 3-5.

- Provide for min. 1% slope, i.e. 1 cm for each m of the length (otherwise a booster pump is required).

- Prevent icing.
Dilute, if possible, with domestic waste water (e.g. bathrooms, washing machines, dish washers...), basic and neutralising.

> Dilute, if possible, with domestic waste water (e.g. bathrooms, washing machines, dish washers...), basic and neutralising.

**Figure 3.4 Condensate drain component**

Charging the siphon
Robur uses condensate collection siphons with float, which blocks the passage of fumes and odours deriving therefrom in case the equipment remains turned off for a long time and the liquid contained in the siphon evaporates or in case of commissioning.

Thanks to this system, it is not necessary to fill the siphon at commissioning.

### 3.12 DEFROSTING WATER DRAINAGE

**Defrosting**

In winter, frost may form on the finned coil and the appliance performs defrosting cycles.

**Collection basin and drainage system**

> Provide for a collection basin or containment rim and a discharge system of the defrosting water, to avoid overflowing, icing and damage.

### 3.13 SAFETY VALVE DRAIN

The safety valve drain must be mandatorily ducted outside. Failure to comply with this provision jeopardizes first start-up.

> Do not install any shut off device on the exhaust duct between the safety valve and the outside exhaust.

**Safety valve drain ducting**
The exhaust ducting shall be made in steel pipes (do not use copper or its alloys). Table 3.5 p. 23 provides sufficient criteria of pipe sizing; alternatively, less compelling sizing is accepted, provided it is compliant with specific applicable norms (the manufacturer cannot be held liable).

**Table 3.5 Safety valve drain ducting**

<table>
<thead>
<tr>
<th>Diameter</th>
<th>DN</th>
<th>Maximum length (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1&quot; 1/4</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>2&quot;</td>
<td>50</td>
<td>60</td>
</tr>
</tbody>
</table>

**How to make the safety valve drain ducting**

1. Remove the plastic cover on the appliance’s left side panel.
2. Connect the drain duct, which must have an initial straight section of at least 30 cm, to the outlet.
3. Fasten the pipe to the nut on the safety valve outlet, taking care to place the Teflon seal supplied with the appliance in between.
4. Place the drain terminal outside the room, away from doors, windows and aeration vents, and at such a height that any coolant leaks cannot be inhaled by any people.

### 3.14 FAN AIR DUCTING

**Air duct**
The appliance is fitted with a flange for connecting to a fan outlet air duct.

> Arrange removable fitting/bellows between the air duct and the appliance’s flange, for fan maintenance operations.

> A pressure socket is provided to measure the pressure differential (see Figure 1.3 p. 9).

### 4 ELECTRICAL INSTALLER

#### 4.1 WARNINGS

**General warnings**

Read the warnings in Chapter III.1 p. 4, providing important information on regulations and on safety.

**Compliance with installation standards**

Installation must comply with applicable regulations in force, based on the installation Country and site, in matters of safety, design, implementation and maintenance of electrical systems.
It is forbidden to use gas pipes as earthing.

**Cable segregation**

Keep power cables physically separate from signal ones.

**Do not use the power supply switch to turn the appliance on/off**

- Never use the external isolation switch (GS) to turn the appliance on and off, since it may be damaged in the long run (occasional blackouts are tolerated).
- To turn the appliance on and off, exclusively use the suitably provided control device (DDC, CCP/CCI or external request).

**Control of water circulation pump**

The water circulation pump of the hydraulic/primary circuit must mandatorily be controlled by the unit’s electronic boards (S61 + Mod10). It is not admissible to start/stop the circulating pump with no enable from the appliance.

4.2 **ELECTRICAL SYSTEMS**

Electrical connections must provide:
- (a) power supply (Paragraph 4.3 p. 24)
- (b) control system (Paragraph 4.4 p. 25)

**How to make connections**

All electrical connections must be made in the appliance’s electrical panel (Figure 4.1 p. 24):
1. Ensure the appliance’s electrical panel is not live.
2. Remove the front panel of the appliance and the cover of the electrical panel.
3. Run the cables through the suitable holes in the connection plate.
4. Run the cables through the suitable cable glands in the electrical panel.
5. Identify the appropriate connection terminals.
6. Make the connections.
7. Close the electrical panel and fit the front panel back on.

**Figure 4.1 Electrical panel**

A  CAN bus cable gland
B  Signal cable gland 0...10 V pump Wilo Stratos Para
C  Electronic boards S61+Mod10+W10
D  Terminal boxes
E  Transformer 230/23 V AC
F  Flame control unit
G  Circulation pump power supply and control cable gland
H  GAHP power supply cable gland

Terminals:
TER terminal box
L-(PE)-N  Phase/earth/neutral GA power supply
MA terminal box
N-(PE)-L  Neutral/earth/phase circulation pump power supply
3-4  Circulation pump enable

4.3 **ELECTRICAL POWER SUPPLY**

**Power supply line**

Provide (by the installer) a protected single phase line (230 V 1-N 50 Hz) with:
- 1 three-pole cable type FG7(O)R 3Gx1,5
- 1 two-pole switch with 25 A type T fuses, (GS) or 1 10 A magnetothermic breaker.
Figure 4.2  Power supply connection

TER  Terminal block
L  Phase
N  Neutral

Components NOT SUPPLIED
GS  Main switch

The switches must also provide disconnector capability, with min contact opening 4 mm.

How to connect the power supply

To connect the three-pole power supply cable (Figure 4.2 p. 25):
1. Access the electrical board of the appliance according to the Procedure 4.2 p. 24.
2. Connect the three lead-in wires to the terminal block (TER) in the electrical panel on the machine.

3. Provide the earth lead-in wire longer than live ones (last to be torn in the event of accidental pulling).

4.4  SET-UP AND CONTROL

Control systems, options (1) (2) (3)

Three separate adjustment systems are provided, each with specific features, components and diagrams (see 4.4 p. 26, 4.7 p. 28):

- System (1), with DDC control (with CAN bus connection).
- System (2), with CCP/CCI control (with CAN bus connection).
- System (3), with an external request.

CAN bus communication network

The CAN bus communication network, implemented with the cable of the same name, makes it possible to connect and remotely control one or more Robur appliances with the DDC or CCP/CCI control devices.

It entails a certain number of serial nodes, distinguished in:

- Intermediate nodes, in variable number.
- Terminal nodes, always and only two (beginning and end).

Each component of the Robur system, appliance (GAHP, GA, AY, ...) or control device (DDC, RB100, RB200, CCI, ...), corresponds to a node, connected to two more elements (if it is an intermediate node) or to just one other element (if it is a terminal node) through two/one CAN bus cable section/s, forming an open linear communication network (never star or loop-shaped).

CAN bus signal cable

The DDC or CCP/CCI controllers are connected to the appliance through the CAN bus signal cable, shielded, compliant to Table 4.1 p. 26 (admissible types and maximum distances).

For lengths ≤200 m and max 4 nodes (e.g. 1 DDC + 3 GAHP), a simple 3x0,75 mm$^2$ shielded cable may be used.

Table 4.1  CAN bus cables type

<table>
<thead>
<tr>
<th>CABLE NAME</th>
<th>SIGNALS / COLOR</th>
<th>MAX LENGTH</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robur</td>
<td></td>
<td></td>
<td>Ordering Code OCVO008</td>
</tr>
<tr>
<td>ROBUR NETBUS</td>
<td>H= BLACK, L= WHITE, GND= BROWN</td>
<td>450 m</td>
<td></td>
</tr>
<tr>
<td>Honeywell SDS 1620</td>
<td></td>
<td></td>
<td>In all cases the fourth conductor should not be used</td>
</tr>
<tr>
<td>BELDEN 3086A</td>
<td>H= BLACK, L= WHITE, GND= BROWN</td>
<td>450 m</td>
<td></td>
</tr>
<tr>
<td>TURCK type 530</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DeviceNet Mid Cable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURCK type 5711</td>
<td>H= BLUE, L= WHITE, GND= BLACK</td>
<td>450 m</td>
<td></td>
</tr>
<tr>
<td>Honeywell SDS 2022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURCK type 531</td>
<td>H= BLACK, L= WHITE, GND= BROWN</td>
<td>200 m</td>
<td></td>
</tr>
</tbody>
</table>

How to connect the CAN bus cable to the appliance

To connect the CAN bus cable to the S61 electronic board (Paragraph 1.5 p. 13), located in the electrical panel inside the unit, (Figure 4.3 p. 26 and 4.4 p. 26):

1. Access the electrical board of the appliance according to the Procedure 4.2 p. 24.
2. Connect the CAN bus cable to the GND (shielding/earthing) + L and H terminals (two signal wires).
3. Place the CLOSED J1 Jumpers (Detail A) if the node is terminal (one connected CAN bus cable section only), or OPEN (Detail B) if the node is intermediate (two connected CAN bus cable sections).
4. Connect the DDC or the CCP/CCI to the CAN bus cable according to the instructions in the following Paragraphs and the DDC or CCP/CCI Manuals.
**Figure 4.3** Connection of the CAN bus cable to the electronic board

<table>
<thead>
<tr>
<th>SCH</th>
<th>GND</th>
<th>L</th>
<th>H</th>
<th>J1</th>
<th>A/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic board</td>
<td>Common data</td>
<td>Data signal LOW</td>
<td>Data signal HIGH</td>
<td>Jumper CAN bus in board</td>
<td>detail of “terminal node” case (3 wires; J1 = jumper “closed”)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>detail of “intermediate node” case (6 wires; J1 = jumper “open”)</td>
</tr>
</tbody>
</table>

**GAHP Configuration (S61) + DDC or CCP/CCI**
Systems (1) and (2), see also Paragraph 1.7 p. 14.

**Figure 4.4** CAN bus connection for systems with one unit

<table>
<thead>
<tr>
<th>DDC</th>
<th>SCH</th>
<th>J1</th>
<th>J21</th>
<th>H/L/GND</th>
<th>A/C</th>
</tr>
</thead>
</table>
| Direct Digital Control | S61 controller | Jumper CAN bus in board | Jumper CAN bus on DDC board | Data signal wires (ref. cables table) | Terminal node connection (3 wires; J1 and J21 = “closed”)
|  |  |  |  | Insulating tape to protect the shield of the CAN bus cable |
|  |  |  |  | Eyelet terminal and fixing screw |

---

F2

PUMP 230V

J10 CONTACT BK WH

FAN 230V  MAIN N L

BOX IGN.

F4

F3

F1 24ac2 0 V

JP11 FL 24 ac1

A2

P6

TF

A1

GND

SP1

HL

P8

SCH

H

L

GND

6512344321

DDC

SCH

JTAG

SRT2

SRT1

JP12

A2

P6

TF

A1

GND

SP1

HL

P8

SCH
External request

System (3), see also Paragraph 1.7 p. 14.

It is required to arrange:

▶ Request device (e.g. thermostat, clock, button, ...) fitted with a voltage-free NO contact.

How to connect the external request

Connection of external request is effected on the S61 board located in the electrical panel inside the unit (Figure 4.7 p. 28):

1. Access the electrical board of the appliance according to the Procedure 4.2 p. 24.
2. Connect the voltage-free contact of the external device (Detail CS), through two wires, to terminals R and W (respectively: common 24 V AC and heating request) of S61 electronic board.
4.5 WATER CIRCULATION PUMP

4.5.1 Option (1) constant flow circulating pump
It must be mandatorily controlled from the S61 electronic board. The diagram in Figure 4.8 p. 28 is for pumps < 700 W. For pumps > 700 W it is required to add a control relay and arrange Jumper J10 OPEN.

How to connect the constant flow circulating pump
1. Access the electrical board of the appliance according to the Procedure 4.2 p. 24.
2. Connect board S61, to terminals 3-4 of terminal block (MA).
3. Jumper J10 open if the pump is > 700 W or is a Wilo electronic pump, otherwise closed.

4.5.2 Option (2) variable flow circulating pump
It must be mandatorily controlled from the Mod10 electronic board (built into the S61).

How to connect the variable flow circulation pump
The Wilo Stratos Para pump is already standard supplied with the power supply cable and signal cable, both 1.5m long. For longer distances, use respectively cable FG7 3Gx1.5mm² and shielded cable 2x0.75 mm² suitable for 0-10V signal. To connect the Wilo Stratos Para pump (Figure 4.9 p. 29 or 4.10 p. 29).
1. Connect the brown wire of the pump to terminal “-” HPMP of the Mod10 board, and the white wire of the pump to terminal “+” HPMP of the Mod10 board.
2. Isolate the black wire and the blue one.
3. Protect the pump’s supply line with a double pole switch with 2 A delayed fuse (Detail IP, Figure 4.9 p. 29), or connect it directly to the terminals inside the appliance’s electrical board (Detail MA, Figure 4.10 p. 29).
5 FIRST START-UP

First start-up entails checking/setting up the combustion parameters and may exclusively be carried out by a Robur TAC. NEITHER the user NOR the installation technician is authorised to perform such operations, under penalty of voiding the warranty.

5.1 PRELIMINARY CHECKS

Preliminary checks for first start-up
Upon completing installation, before contacting the TAC the installer must check:

► Water, electrical and gas systems suitable for the required capacities and equipped with all safety and control devices required by the regulations in force.
► Absence of leaks in the water and gas systems.
► Type of gas for which the appliance is designed (natural gas or LPG).
► Supply gas pressure complying with the values of Table 3.3 p. 20, with max tolerance ±15%.
► Correct operation of the flue exhaust duct.
► Power supply mains complying with the appliance’s rating plate data.
► Appliance correctly installed, according to the manufacturer’s instructions.
► System installed in a workmanlike manner, according to national and local regulations.

Abnormal or hazardous installation situations
Should any abnormal or hazardous installation situations be found, the TAC shall not perform first start-up and the appliance shall not be commissioned. These situations may be:

► Appliance installed inside a room that has no sufficiently wide aeration vents.
► Appliance installations other than type C.
► Failed compliance with minimum clearances.
► Insufficient distance from combustible or flammable materials.
► Conditions that do not warrant access and maintenance in safety.
► Appliance switched on/off with the main switch, instead of the control device provided (DDC, CCP/CCI or external request).
► Appliance defects or faults caused during transport or installation.
► Gas smell.
► Non-compliant mains gas pressure.
► Non-compliant flue gas exhaust.
First start-up

► No outside ducting of the safety valve drain.
► No ducting of the air expelled by the fan.
► All situations that may involve operation abnormalities or are potentially hazardous.

Non-compliant system and corrective actions
Should the TAC find any non conformities, the user/installer is bound to perform any corrective procedures required by the TAC.
After performing the remedial actions (the installer's responsibility), if the TAC deems that safety and conformity conditions are in place, first start-up may be effected.

5.2 ELECTRONIC ADJUSTMENT ON THE MACHINE – MENUS AND PARAMETERS OF THE S61 BOARD

Firmware
The instructions on the use of the S61 electronic board concern the firmware version 3.035.

The appliance's electronic board (S61)

Figure 5.1 GAHP unit electronic board (S61+Mod10)

Display
The 4-digit display of the S61 board (Detail A Figure 5.1 p. 30) is as follows:
► The first digit (on the left, green) indicates the menu number (e.g. "0;", "1;", "2;", ... "8;.").
► The last three digits (on the right, red) indicate a code or a value for a parameter, among those included in the selected menu (e.g. "__6;", "20;", "161;").
(e.g. menu+parameter "1;__6;", "2;20;", "3.161;").

Knob
One of the following actions may be done with the S61 board knob (Detail B in Figure 5.1 p. 30):
► Enter the menu list (by pressing the first time).
► Scroll the menu list, or a series of parameters in a menu (by turning).
► Select a menu or a parameter (by pressing).
► Modify and confirm the setting of a parameter (turning and pressing).
► Execute a command (by pressing).

► Exit a menu and go back to the higher level by selecting the letter "E" which is displayed at the end of the menu list or of a series of parameters in a menu.
The letter "E" is displayed at the end of the menu list or of a series of parameters in a menu, and indicates the exit to go back to the higher level by pressing the knob.

Menus and Parameters
The menus may be display only (functional data or parameters), display and setting (parameters) or control (reset).

Menu for the user (but for the installer and TAC as well)
► The menu "0;", display only, for functional data detected in real time.
► The menu "1;", display only, for current values of appliance parameters.
► Menu "2;", control, to execute flame control unit reset operations, reset errors (Paragraph 7.5 p. 33).
► Menu "3;", display and setting, to set the value of some system parameters (e.g. water set point temperature); the values are initialised by the TAC at first start-up.

It is accessed without password.

Menu for the installer or TAC (not accessible to the user)
► Menu "4;", "5;", "6;" and "9;" are password-protected. These are specific sections, exclusively intended for qualified personnel (installer or TAC). For information see the Service manual.
► Menu "7;" is display only and intended for the manufacturer.
► Menu "8;" is empty, it may be selected but not used.

Special key for the knob
■ To access the menus and parameters of the S61 board, use the special standard supplied key, fastened on the gas pipe above the electrical panel. The key allows the knob to be operated through the suitable hole in the electrical panel cover, operating safely away from live components.
■ Always keep the key for future uses.

How to access the menus and parameters

Before Starting:
(1) Power supply switch on.
(2) Display of the S61 board showing in sequence the detected water temperature data (if the appliance is in normal operation), or the flashing malfunction and failure codes if the appliance is in failure.

To access the menus and parameters of the S61 board, proceed as follows (see also Figure 5.1 p. 30):
1. Remove the front panel by removing the fixing screws.
2. Remove the cover of the electrical board to access the S61 board knob.
3. Act on the knob by means of the special key through the suitable hole.
4. Press the knob once to display the menus: the first menu is displayed, "0;" (= menu 0).
5. Turn the knob clockwise to scroll down and display the other/subsequent menus; the menu numbers will be displayed in order, "1;", "2;", "3;", ... "6;" or "E;" (= exit).
6. Select the menu of interest (e.g. display "2;__6;" = menu 2) by pressing the knob; the first parameter code will be displayed, in menu order (e.g. display "2;20;" = parameter 20 in menu 2).
7. Turn the knob clockwise to scroll down the other parameters in the menu; the codes will be displayed in order (e.g. display "2;20;", "2;21;", ... "2;25;" = parameters 20, 21, ... 25 in menu 2), or letter "E;" (= exit) at the end of the list.
8. Select the parameter of interest (e.g. with code 161 in menu 3) by pressing the knob; the figure previously assigned to the parameter will be displayed, read only or to be set (e.g. the figure "45" for parameter 161 in menu 3 = water temperature set-point at 45 °C); if instead of a figure/setting it is a command, a flashing code is displayed (e.g. "reS1" for the flame block reset command).
9. Press the knob to reconfirm the figure; or rotate the knob to modify the figure, and press at the end to confirm or set the new figure; if however, it is a matter of controlling an appliance operation, press the knob to execute it.
10. To exit a parameter menu or the menu list and go back to the higher level, turn the knob to display the letter "E" for exit, then press the knob again.
11. Place the cover back on the electrical panel opening and fit the appliance's front panel back on.

5.3 MODIFYING SETTINGS

Modify the settings through the DDC or CCP/CCI

If the appliance is connected to the DDC or to the CCP/CCI control, refer to the relevant manual to modify settings.

6 NORMAL OPERATION

This section is for the end user.

6.1 WARNINGS

General warnings

Prior to using the appliance carefully read the warnings in Chapter III.1 p. 4, providing important information on regulations and on safety.

First startup by TAC

First start-up may exclusively be carried out by a Robur TAC (Chapter 5 p. 29).

Never power the appliance off while it is running

NEVER power the appliance off while it is running (except in the event of danger, Chapter III.1 p. 4), since the appliance or system might be damaged.

6.2 SWITCH ON AND OFF

Routine switching on/off

The appliance may exclusively be switched on/off by means of the suitably provided control device (DDC, CCP/CCI or external requests).

How to raise/lower the water temperature setpoint

The water temperature set-point establishes the outlet temperature to the system (water output from the appliance), or inlet from the system (water input in the appliance). The temperature is pre-set by the TAC upon first start-up.

If the appliance is not connected to a DDC or CCP/CCI control, to raise/lower the water temperature set-point with the S61 board, proceed as follows:

1. Access menu 3 under parameter 161 (= water temperature set-point) by rotating and pressing the knob; "3.161" must be displayed (procedure Paragraph 5.2 p. 30).
2. Display the parameter value by pressing the knob; the previously set value is displayed (from 10 to 65 °C); to reconfirm the pre-existing value press the knob again, otherwise go to step 3.
3. Turn the knob to modify the value, increasing or decreasing it, and press it to set the new value.
4. Exit menu 3, and from the menu list, by selecting and pressing letter "E" twice, and go back to the normal display of detected temperature data.

Do not modify complex settings

Specific technical and system knowledge is required for complex settings. Contact a TAC.

Do not switch on/off with the power supply switch

Do not switch the appliance on/off with the power supply switch. This may be harmful and dangerous for the appliance and for the system.

Checks before switching on

Before switching on the appliance, ensure that:
- gas valve open
- appliance electrical power supply (main switch (GS) ON)
- DDC or CCP/CCI power supply (if present)
- water circuit ready

How to switch on/off

- If the appliance is controlled by a DDC or by a CCP/CCI (systems (1) and (2) see Paragraph 1.7 p. 14), refer to the respective manuals.
- If the appliance is controlled by external request (e.g. thermostat, clock, button, ... with voltage-free NO contact), (system (3) see Paragraph 1.7 p. 14), the appliance is switched on/off by the ON/OFF positions of the external control device.

After switching on with the control, in normal operating conditions, the appliance starts/stops automatically according to the user's thermal needs, supplying hot water at the programmed temperature.

Although the external request is in the "ON" position, this does not mean the appliance will start immediately, but it will only start when there are actual service demands.
6.3 MODIFYING SETTINGS

Modify the settings through the DDC or CCP/CCI

If the appliance is connected to the DDC or to the CCP/CCI control, refer to the relevant manual to modify settings.

Do not modify complex settings

Specific technical and system knowledge is required for complex settings. Contact a TAC.

6.4 EFFICIENCY

For increased appliance efficiency:
- Keep the finned coil clean.
- Set water temperature to the actual system requirement.
- Reduce repeated switch-ons to the minimum (low loads).
- Program appliance activation for actual periods of use.
- Keep water and air filters on plumbing and ventilation systems clean.

7 MAINTENANCE

7.1 WARNINGS

Correct maintenance prevents problems, assures efficiency and keeps running costs low.

Maintenance operations described herein may exclusively be performed by the TAC or skilled maintenance technician.

Any operation on internal components may exclusively be performed by the TAC.

Before performing any operation, switch off the appliance by means of the control device (DDC, CCP/CCI or external request) and wait for the end of the shutdown cycle, then disconnect power and gas supply, by acting on the electrical disconnector and gas valve.

7.2 PRE-EMPTIVE MAINTENANCE

For pre-emptive maintenance, comply with the recommendations in Table 7.1 p. 32.

Table 7.1

<table>
<thead>
<tr>
<th>Guidelines for the preventive maintenance operations</th>
<th>GAHP A</th>
<th>GAHP GS/WS</th>
<th>AYD0-120</th>
<th>GA ACF</th>
<th>GAHP-AR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check of the unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>visually check of the general condition of the unit and of its finned coil</td>
<td>✓ (1)</td>
<td>-</td>
<td>-</td>
<td>✓ (1)</td>
<td>✓ (1)</td>
</tr>
<tr>
<td>check the correct operation of the device used for monitoring the water flow</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>check the % value of CO₂</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>check gas pressure to the burners</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>check that the condensate discharge is clean (if necessary, frequency of the maintenance operation must be increased)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>replace the belts after 6 years or 12,000 hours of operation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>check/restore the pressure of the primary hydronic circuit</td>
<td>-</td>
<td>-</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>check/restore the air pressure inside of the expansion vessel of the primary hydronic circuit</td>
<td>-</td>
<td>-</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Check for every DDC or CCI</td>
<td>check that the plant is able to achieve the setpoint temperature</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>download the event history</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

(1) It is suggested to clean the finned coil once every 4 years (optimal frequency of the cleaning operation is in any case strongly affected by the installation site). Avoid excessively aggressive cleaning of the finned coil (e.g. high-pressure washer).

7.3 SCHEDULED ROUTINE MAINTENANCE

For scheduled routine maintenance, perform the operations in Table 7.2 p. 33, at least once every 2 years.

The efficiency checks and every other "check and maintenance operation" (see Tables 7.1 p. 32 and 7.2 p. 33) must be performed with a frequency according to current regulations or, if more restrictive, according to the provisions set forth by the manufacturer, installer or TAC.

Responsibility for efficiency checks, to be carried out for the aims of restricting energy consumption, lies with the system manager.

Environmental or operational heavy conditions

In environmental or operational conditions particularly heavy (for example: heavy-duty use of the appliance, salty environment, etc.), maintenance and cleaning operations must be more frequent.
### 7.4 Messages on the Display

#### 4 digit display

The S61 board of the appliance (Paragraph 1.5 p. 13, Figure 5.1 p. 30) is fitted with a 4-digit display, visible through the sight glass of the front panel.

- When the appliance is powered on, all the LEDs switch on for 3 sec, then the board name is displayed.
- After another 15 sec, the appliance is ready to operate.

#### Signals in normal operation

- During normal operation, water temperature values alternate on the display: output, input and the difference between the two.

#### Signals in the event of fault

In the event of fault the display blinks indicating an operational code (first letter on the display: “E” = error, or “U” = warning). The display rotates after the values of the outlet water temperature, the inlet and the difference between them.

If multiple events are active, they are shown in sequence, ordered by increasing code number. If warning or error events are active, the left green symbol, shown together with water temperature data, blinks. If it is a permanent error or warning the appliance stops. (Table 8.1 p. 34).

### 7.5 Restarting a Locked-Down Unit

#### Fault signals on the display

In the event of locked-down appliance, an operational code flashes on the display (first green figure on the left, letter “U” = warning or “E” = error).

- To restart the appliance you must know and perform the procedure concerning the issue signalled and identified by the code (Paragraph 8.1 p. 34).
- Only act if you are familiar with the issue and with the procedure (technical expertise and professional qualifications might be required).
- If you do not know the code, the problem, or the procedure, or you do not have sufficient skills, and in any case of doubt, contact the TAC.

#### Locked-down appliance

An external intervention (reset or repair) is required due to an appliance fault or problem with the system.

- A reset may be enough for a temporary and provisional fault.
- For a fault or breakdown, alert the maintenance technician or TAC.

#### Reset

There are two options for resetting a fault:

1. If the appliance is connected to a DDC you may act through the control device, as described in the relevant manual.
2. You may act directly from the S61 board as described below (if the appliance is controlled with external request, this is the only option).

#### How to perform reset from the S61 board

To perform the reset directly from the S61 board:

1. Access Menu 2 under Parameter “_20”, to reset flame block (Error E412), or Parameter “_21”, for any other generic reset, turning and pressing the knob; “2._20”/“2._21” must be displayed (procedure Paragraph 5.2 p. 30).
2. Press the knob to display the flashing reset request (e.g. “re51” to reset flame block).
3. Press the knob again (the second time) to perform the reset; the reset request stops flashing, then “2._XX” is displayed again (e.g. “2._20”). The reset operation has been performed.
4. Exit menu 2 and the menu list, by selecting and pressing letter “E” twice, and go back to the normal display of detected temperature data.

### 7.6 Periods of Inactivity

#### Avoid emptying the installation

Emptying the system may cause damage due to corrosion of the water pipes.

#### Deactivate the system in winter

Should you intend to stop the appliance in the winter season, ensure at least one of the following conditions:

1. antifreeze function active (Paragraph 3.5 p. 19)
2. sufficient anti-icing glycol (Paragraph 3.6 p. 19)

#### Prolonged periods of inactivity

- Should you foresee to leave the appliance inactive for a long period of time, disconnect it from the electrical and gas mains. These operations must be performed by qualified personnel.

#### How to deactivate the appliance for long periods of time

1. Switch the appliance off (Paragraph 6.2 p. 31).
2. Only when the appliance is completely off, power it off with the main switch/disconnector switch (Detail GS in Figure 4.2 p. 25).
3. Close the gas valve.
4. If necessary, add water with glycol (if the appliance is disconnected from the power and gas mains, the active anti-icing protection is missing, Paragraph 3.5 p. 19).
How to reactivate the appliance after long periods of inactivity

Before reactivating the appliance, the operator/maintenance technician of the system must first of all:

- Check whether any maintenance operations are required (contact the TAC; see Paragraphs 7.2 p. 32 and 7.3 p. 32).
- Check content and quality of the water in the system, and if necessary top it up (Paragraphs 3.8 p. 20, 3.7 p. 20 and 3.6 p. 19).

Ensure the flue gas exhaust duct is not obstructed, and that the condensate drain is clean.

After completing the above checks:

1. Open the gas valve and ensure there are no leaks; should gas smell be noticed, close the gas valve again, do not switch any electrical devices on and request intervention by qualified personnel.
2. Power on with the main power supply switch (GS, Figure 4.2 p. 25).
3. Switch on the appliance by means of the provided control device (DDC, CCP/CCI or external request, Paragraph 4.4 p. 25).

8 DIAGNOSTICS

8.1 OPERATIVE CODES

Table 8.1 Operative codes GAHP A

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Warning (u)</th>
<th>Error (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>Flame controller reset circuit fault</td>
<td>NA</td>
<td>Power cycle the appliance. If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>401</td>
<td>Limit thermostat trip</td>
<td>Contact the TAC.</td>
<td></td>
</tr>
<tr>
<td>402</td>
<td>Flue gas thermostat trip</td>
<td>Contact the TAC.</td>
<td></td>
</tr>
<tr>
<td>405</td>
<td>Outdoor temperature exceeding</td>
<td>NA</td>
<td>Reset is automatic when the triggering condition ceases.</td>
</tr>
<tr>
<td></td>
<td>operational limits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>406</td>
<td>Outdoor temperature below</td>
<td>Non-blocking Warning (informative code). Reset is automatic when the triggering condition ceases.</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>operational limits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>407</td>
<td>High generator temperature</td>
<td>Reset is automatic when the triggering condition ceases.</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>408</td>
<td>Flame controller error</td>
<td>NA</td>
<td>Contact authorised Technical Assistance</td>
</tr>
<tr>
<td>410</td>
<td>Low hot water flow</td>
<td>Reset is automatic when the triggering condition ceases.</td>
<td>Check and clean water filters on the system. Check for air in the system. Power cycle the appliance. Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>411</td>
<td>Insufficient rotation of oil pump</td>
<td>Reset occurs automatically 20 minutes after the code is generated.</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>412</td>
<td>Flame controller lockout</td>
<td>Reset is automatic up to 4 attempts (in about 5 minutes).</td>
<td>Check gas supply. Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 20). If the code persists or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>416</td>
<td>Hot water delivery temperature probe</td>
<td>NA</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td></td>
<td>fault</td>
<td></td>
<td></td>
</tr>
<tr>
<td>417</td>
<td>Hot water inlet temperature probe</td>
<td>NA</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td></td>
<td>fault</td>
<td></td>
<td></td>
</tr>
<tr>
<td>420</td>
<td>Generator temperature probe fault</td>
<td>NA</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>422</td>
<td>Water flowmeter fault</td>
<td>NA</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Reset</td>
<td>Note</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------------------------</td>
<td>-------</td>
<td>-------------------------------------------</td>
</tr>
<tr>
<td>423</td>
<td>Air-gas mix temperature probe fault</td>
<td>NA</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>424</td>
<td>Flue gas temperature probe fault</td>
<td>Reset is automatic when the triggering condition ceases.</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>425</td>
<td>Clogged condensate drain</td>
<td>NA</td>
<td>Check and clean condensate discharge. Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>426</td>
<td>Generator fins temperature probe fault</td>
<td>Reset is automatic when the triggering condition ceases.</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>428</td>
<td>Flame controller error</td>
<td>NA</td>
<td>Power off the appliance. Contact the TAC.</td>
</tr>
<tr>
<td>429</td>
<td>Gas solenoid valve without electrical power</td>
<td>Reset occurs automatically if the gas solenoid valve switches on again within 10 minutes (with central flame control unit on).</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>430</td>
<td>High flue gas or generator fins temperature</td>
<td>Reset is automatic when the triggering condition ceases.</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>431</td>
<td>Hot water temperature exceeding operational limits</td>
<td>Check configuration of other heat generators on the system. Check water flow. Check system thermal load. Reset is automatic when the triggering condition ceases.</td>
<td>NA</td>
</tr>
<tr>
<td>434</td>
<td>-</td>
<td>Contact the TAC.</td>
<td>NA</td>
</tr>
<tr>
<td>436</td>
<td>Blower fault</td>
<td>Reset occurs automatically 20 minutes after the code is generated.</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>437</td>
<td>Low air-gas mix temperature</td>
<td>Non-blocking Warning (informative code). The code is reset automatically when the triggering condition ceases.</td>
<td>NA</td>
</tr>
<tr>
<td>444</td>
<td>Evaporator temperature probe fault</td>
<td>NA</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>446</td>
<td>High hot water inlet temperature</td>
<td>Check configuration of other heat generators on the system. Reset is automatic and occurs if the generating condition ceases with circulating pump on or 20 minutes after the code is generated with circulating pump off.</td>
<td>NA</td>
</tr>
<tr>
<td>447</td>
<td>Hot water inlet temperature below operational limits</td>
<td>Reset occurs automatically when the generating cause resolves or 430 seconds after the code is generated.</td>
<td>Reset occurs automatically when the condition that generated the code ceases. If the code shows up again or in case of doubt contact the TAC.</td>
</tr>
<tr>
<td>448</td>
<td>High hot water differential temperature</td>
<td>Check water flow. Reset occurs automatically 20 minutes after the code is generated.</td>
<td>Reset occurs automatically when the condition that generated the code ceases. If the code shows up again or in case of doubt contact the TAC.</td>
</tr>
<tr>
<td>449</td>
<td>Missing auxiliary board</td>
<td>NA</td>
<td>Contact the TAC.</td>
</tr>
<tr>
<td>452</td>
<td>Defrosting cycle activated</td>
<td>Non-blocking Warning (informative code). The code clears automatically when execution of defrosting ends.</td>
<td>NA</td>
</tr>
<tr>
<td>453</td>
<td>Water flow while system in cooling mode</td>
<td>Reset is automatic when the triggering condition ceases.</td>
<td>NA</td>
</tr>
<tr>
<td>460</td>
<td>Defrosting valve has failed to open</td>
<td>Non-blocking Warning (informative code). Reset is automatic, however, it is advisable to contact the TAC.</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21). If the code persists, shows up again or in case of doubt, contact the TAC.</td>
</tr>
<tr>
<td>461</td>
<td>Oil pump priming cycle activated</td>
<td>The priming cycle lasts 30' if activated manually or 10 minutes if activated automatically. Reset is automatic when the triggering condition ceases.</td>
<td>NA</td>
</tr>
<tr>
<td>478</td>
<td>High hot water delivery temperature</td>
<td>Reset is automatic when the triggering condition ceases.</td>
<td>NA</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Action</td>
<td>Resolution</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------------------------</td>
<td>------------------------------------------------------------------------</td>
<td>---------------------------------------------------------------------------</td>
</tr>
<tr>
<td>479</td>
<td>Heating antifreeze function activated</td>
<td>Non-blocking Warning (informative code).</td>
<td>The code clears automatically when antifreeze function execution ends.</td>
</tr>
<tr>
<td>480</td>
<td>Incomplete functional parameters</td>
<td>Contact the TAC.</td>
<td>NA</td>
</tr>
<tr>
<td>481</td>
<td>Invalid bank 1 parameters</td>
<td>Reset is automatic when the triggering condition ceases.</td>
<td>Contact the TAC.</td>
</tr>
<tr>
<td>482</td>
<td>Invalid bank 2 parameters</td>
<td>Reset is automatic when the triggering condition ceases.</td>
<td>Contact the TAC.</td>
</tr>
<tr>
<td>484</td>
<td>Transformer or 24 Vac fuse fault</td>
<td>NA</td>
<td>Contact the TAC.</td>
</tr>
<tr>
<td>485</td>
<td>Invalid module type configuration parameters</td>
<td>NA</td>
<td>Contact the TAC.</td>
</tr>
<tr>
<td>486</td>
<td>ROM board fault</td>
<td>NA</td>
<td>Contact the TAC.</td>
</tr>
<tr>
<td>487</td>
<td>pRAM board fault</td>
<td>NA</td>
<td>Contact the TAC.</td>
</tr>
<tr>
<td>488</td>
<td>xRAM board fault</td>
<td>NA</td>
<td>Contact the TAC.</td>
</tr>
<tr>
<td>489</td>
<td>Registers board fault</td>
<td>NA</td>
<td>Contact the TAC.</td>
</tr>
<tr>
<td>490</td>
<td>Outdoor temperature probe fault</td>
<td>NA</td>
<td>Reset may be performed from the DDC/CCI or from the S61 board (menu 2, parameter 21).</td>
</tr>
<tr>
<td>491</td>
<td>Electronic board fault</td>
<td>NA</td>
<td>Contact the TAC.</td>
</tr>
</tbody>
</table>

NA: Not Applicable
9 APPENDICES

9.1 PRODUCT FICHE

Figure 9.1

Table 8

COMMISSION DELEGATED REGULATION (EU) No 811/2013
Technical parameters for heat pump space heaters and heat pump combination heaters

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
<th>Item</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated heat output (*)</td>
<td>$P_{prated}$</td>
<td>30.1 kW</td>
<td></td>
<td>Seasonal space heating energy efficiency</td>
<td>$\eta_s$</td>
<td>112 %</td>
<td></td>
</tr>
<tr>
<td>Declared capacity for heating for part load at indoor temperature $20 \degree C$ and outdoor temperature $T_J$</td>
<td>$P_{dh}$</td>
<td>26.5 kW</td>
<td></td>
<td></td>
<td>$T_J = -7 \degree C$</td>
<td>$P_{ERd}$</td>
<td>96 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.3 kW</td>
<td></td>
<td></td>
<td>$T_J = +2 \degree C$</td>
<td>$P_{ERd}$</td>
<td>121 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.5 kW</td>
<td></td>
<td></td>
<td>$T_J = +7 \degree C$</td>
<td>$P_{ERd}$</td>
<td>117 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.5 kW</td>
<td></td>
<td></td>
<td>$T_J = +12 \degree C$</td>
<td>$P_{ERd}$</td>
<td>111 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- kW</td>
<td></td>
<td></td>
<td>$T_J = bivalent temperature$</td>
<td>$P_{ERd}$</td>
<td>- %</td>
</tr>
<tr>
<td>Annual energy consumption</td>
<td>$Q_{ac}$</td>
<td>200 GJ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COLDER CLIMATE CONDITIONS

| Rated heat output (*) | $P_{prated}$ | 29.8 kW | | Seasonal space heating energy efficiency | $\eta_s$ | 108 % | |
| Declared capacity for heating for part load at indoor temperature $20 \degree C$ and outdoor temperature $T_J$ | $P_{dh}$ | 18.2 kW | | | $T_J = -7 \degree C$ | $P_{ERd}$ | 109 % |
| | | 11.0 kW | | | $T_J = +2 \degree C$ | $P_{ERd}$ | 118 % |
| | | 7.2 kW | | | $T_J = +7 \degree C$ | $P_{ERd}$ | 113 % |
| | | 3.3 kW | | | $T_J = +12 \degree C$ | $P_{ERd}$ | 111 % |
| | | - kW | | | $T_J = bivalent temperature$ | $P_{ERd}$ | - % |
| $T_J = operation limit temperature$ | $P_{dh}$ | 29.8 kW | | | $T_J = operation limit temperature$ | $P_{ERd}$ | 87 % |
| For air-to-water heat pumps: | $P_{dh}$ | 24.4 kW | | For air-to-water heat pumps: | | | |
| $T_J = -15 \degree C$ (if TOL $< -20 \degree C$) | $P_{dh}$ | - kW | | | $T_J = -15 \degree C$ (if TOL $< -20 \degree C$) | $P_{ERd}$ | 90 % |
| Annual energy consumption | $Q_{ac}$ | 245 GJ | |

WARMER CLIMATE CONDITIONS

| Rated heat output (*) | $P_{prated}$ | 36.6 kW | | Seasonal space heating energy efficiency | $\eta_s$ | 116 % | |
| Declared capacity for heating for part load at indoor temperature $20 \degree C$ and outdoor temperature $T_J$ | $P_{dh}$ | 36.6 kW | | | $T_J = +2 \degree C$ | $P_{ERd}$ | 119 % |
| | | 23.4 kW | | | $T_J = +7 \degree C$ | $P_{ERd}$ | 117 % |
| | | 10.6 kW | | | $T_J = +12 \degree C$ | $P_{ERd}$ | 117 % |
| | | - kW | | | $T_J = bivalent temperature$ | $P_{ERd}$ | - % |
| Bivalent temperature | $T_{bic}$ | $T_{OL} < T_{heating limit}$ | °C | | | $T_{OL} = 22 \degree C$ | |
| Heating water operating limit temperature | $WTOL$ | 65 °C | |

Power consumption in modes other than active mode

<table>
<thead>
<tr>
<th>Mode</th>
<th>Power consumption</th>
<th>Rated heat output $P_{sup}$</th>
<th>kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off mode</td>
<td>$P_{off}$</td>
<td>0.000 kW</td>
<td></td>
</tr>
<tr>
<td>Thermostat-off mode</td>
<td>$P_{TO}$</td>
<td>0.021 kW</td>
<td></td>
</tr>
<tr>
<td>Standby mode</td>
<td>$P_{SB}$</td>
<td>0.005 kW</td>
<td></td>
</tr>
<tr>
<td>Crankcase heater mode</td>
<td>$P_{CK}$</td>
<td>- kW</td>
<td></td>
</tr>
</tbody>
</table>

Other items

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity control</td>
<td>variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sound power level, indoors/outdoors</td>
<td>$L_{A,ref}$</td>
<td>-6.7 dB</td>
<td></td>
</tr>
<tr>
<td>Contact details</td>
<td>Robur SPA, Via Parigi 4-6, I-24040 Zingonia (BG)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output $P_{rated}$ is equal to the design load for heating $P_{desigh}$, and the rated heat output of a supplementary heater $P_{sup}$ is equal to the supplementary capacity for heating $sup(T_J)$.

Additional information required by COMMISSION REGULATION (EU) No 813/2013, Table 2:

Emissions of nitrogen oxides: $NO_x$ 40 mg/kWh
9.2 SAFETY DEVICES

9.2.1 Safety devices prescribed by the PED

The PED (Pressure Equipment Device) Directive prescribes that the unit is supplied with a hermetic circuit safety valve (detail B Figure 9.2 p. 38).

![Main safety devices of the unit - Internal view of the unit](image)

**Figure 9.2 Main safety devices of the unit - Internal view of the unit**

---

**Table 9.1 Safety valve**

<table>
<thead>
<tr>
<th>Type</th>
<th>Calibration</th>
<th>Model</th>
<th>Spare part code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sealed circuit safety valve</td>
<td>Valve and actuator</td>
<td>464.1 PSIG (32 bar) at 110 °C ± 3%</td>
<td>NGI* J-VLV0958</td>
</tr>
</tbody>
</table>

* The manufacturer guarantees the functioning and the safety of the unit only if it is equipped with original spare parts

**Safety valve inspection procedure**

The appliance off (external master switch in OFF position) and without electric and gas power supply:

1. remove the front and upper panel of the unit;
2. identify the valve, which lies behind the levelling chamber;
3. inspect the component (if the valve must be replaced, refer to Paragraph p. 42);
4. re-mount the front and upper panel of the unit.

9.2.2 Additional safety devices

The following additional safety devices are installed on the appliance:

- Generator limit thermostat (see pos. A in the Figure 9.2 p. 38).
- Bypass valve (see pos. B in the Figure 9.2 p. 38).

The main features of the two devices are given in Table 9.2 p. 38.

**Table 9.2 Characteristics of the two supplementary devices**

<table>
<thead>
<tr>
<th>Type</th>
<th>Calibration</th>
<th>Model</th>
<th>Spare part code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit thermostat of the generator</td>
<td>Thermostat, with bimetal disk inside, of manual reset type ed quick opening of the contact. NC contact type (normally closed)</td>
<td>180 °C ± 7 °C</td>
<td>CAMPINI COREL code 60R180H02/04154 or similar* J-TLT015</td>
</tr>
<tr>
<td>Bypass valve</td>
<td>Valve and actuator</td>
<td>25,5 + 0/-2 bar</td>
<td>Robur S.p.A. code H-VLV1108</td>
</tr>
</tbody>
</table>

* The manufacturer guarantees the functioning and the safety of the unit only if it is equipped with original spare parts
In the case of replacement, the use of original spare parts is recommended (see codes in Table 9.2 p. 38). The manufacturer is exempt from any contractual or extra-contractual responsibility for damage caused by the use of non-original spare parts.

9.2.3 Safety valve replacement operations

This operation must be performed by professionally qualified staff. Before proceeding, visually check the integrity of the unit hermetic circuit.

Proceed as indicated below for the replacement operations:

OPERATIONS TO BE CARRIED OUT USING THE ENVISIONED INDIVIDUAL PROTECTION DEVICES (I.P.D.)

Material necessary for the intervention (see Figure 9.3 p. 39):
- n. 2 CH22 face spanners
- n. 1 CH8 box spanner
- spare parts kit made up from (see key in Figure 9.3 p. 39).

The components subject of the intervention are represented in Figure 9.4 p. 40.
Stop the unit and wait for the end of the shutdown cycle.

1. Disconnect the unit electric power supply.
2. Remove the upper panel from the unit.
3. Position the n. 2 CH22 spanners in the relevant seat (see Figure 9.5 p. 40).

   **WARNING! DO NOT REMOVE THE COMPONENTS DISTINGUISHED BY THE WAX SEAL.**

   1. Loosen the inspection valve in the direction indicated in detail “2” of Figure 9.5 p. 40 until complete assembly as indicated in Figure 9.6 p. 41 paying attention not to loosen part “B” of the inspection valve (see Figure 9.4 p. 40);

   **ATTENTION!** if a consistent ammonia leak is detected during the removal phase, tighten the inspection valve immediately.
2. Replace the o-ring as indicated in Figure 9.7 p. 41.
3. Tighten part “B” of the inspection valve to part “A” (see Figure 9.8 p. 41)
4. Tighten the valve, applying a torque of 62 Nm.

---

**Figure 9.4** Detail of safety valve mounted on unit - Description of components involved in the operation

- **A** Safety valve
- **B** Inspection valve
- **C** Sealed circuit

---

Stop the unit and wait for the end of the shutdown cycle.

1. Disconnect the unit electric power supply.
2. Remove the upper panel from the unit.
3. Position the n. 2 CH22 spanners in the relevant seat (see Figure 9.5 p. 40).

   **WARNING! DO NOT REMOVE THE COMPONENTS DISTINGUISHED BY THE WAX SEAL.**

   1. Loosen the inspection valve in the direction indicated in detail “2” of Figure 9.5 p. 40 until complete assembly as indicated in Figure 9.6 p. 41 paying attention not to loosen part “B” of the inspection valve (see Figure 9.4 p. 40);

   **ATTENTION!** if a consistent ammonia leak is detected during the removal phase, tighten the inspection valve immediately.
2. Replace the o-ring as indicated in Figure 9.7 p. 41.
3. Tighten part “B” of the inspection valve to part “A” (see Figure 9.8 p. 41)
4. Tighten the valve, applying a torque of 62 Nm.

---

**Figure 9.5** Safety valve disassembly - Details 1 and 2 of safety valve disassembly

- **A** hold in place
- **B** turn counterclockwise
Figure 9.6 Removal of safety valve mobile part - Removal of safety valve

Figure 9.7 O-ring - Down view

Figure 9.8 Inspection valve - Detail A of fixed part, detail B of removable part

A Fixed part
B Removable part
Appendices

Figure 9.9 Inspection valve assembly - Assembly of removable part

1. Test for the absence of ammonia using a phenolphthalein test strip.
2. Mount the unit upper panel.

WARNING! DO NOT START THE APPLIANCE WITHOUT THE SAFETY VALVE.

9.2.4 Non-condensable or non-absorbable gases

Indirect control of the presence of non-condensable or non-absorbable gas in the hermetic circuit or internal corrosion phenomena

The presence of corrosion phenomena inside the hermetic circuit has immediate effect that cause machine anomalies that can be easily recognised:

1. development of a large amount of non-condensable and non-absorbable gas, produced of the corrosion reaction, which causes an accumulation of these gases in the generator and, consequently, immediate overheating of the generator. This is caused by the interruption of the water-ammonia solution evaporation process.
2. production of rust which, detaching from the internal walls of the hermetic circuit, rapidly blocks the circulation of refrigerant fluid, thus blocking the orifices of the restrictors. This situation leads to a lack of water-ammonia solution to be evaporated in the generator and causes the same over-heating phenomenon.

In both cases, the over-heating of the generator makes the manual-rearm safety thermostat intervene, which is installed on the wall of the generator.

As a consequence, if there are no generator thermostat interventions, all corrosion phenomena can be excluded and no inspection or additional action is necessary.

The possibility that internal corrosion phenomena are in progress must be taken into consideration only when a series of five (5) thermostat interventions are detected. In this case, contact the after-sales service.
Robur mission

Robur is dedicated to dynamic progression in research, development and promotion of safe, environmentally-friendly, energy-efficiency products, through the commitment and caring of its employees and partners.